Deric Pang
7 年前
当前提交
30c4f2d7
共有 3 个文件被更改,包括 243 次插入 和 218 次删除
-
56python/tests/test_buffer.py
-
187python/tests/test_trainer_controller.py
-
218python/tests/test_unitytrainers.py
|
|||
import json |
|||
import unittest.mock as mock |
|||
|
|||
import yaml |
|||
import pytest |
|||
import numpy as np |
|||
|
|||
from unitytrainers.trainer_controller import TrainerController |
|||
from unitytrainers.buffer import Buffer |
|||
from unitytrainers.ppo.trainer import PPOTrainer |
|||
from unitytrainers.bc.trainer import BehavioralCloningTrainer |
|||
from unitytrainers.curriculum import Curriculum |
|||
from unitytrainers.exception import CurriculumError |
|||
from unityagents.exception import UnityEnvironmentException |
|||
from .mock_communicator import MockCommunicator |
|||
|
|||
|
|||
def assert_array(a, b): |
|||
assert a.shape == b.shape |
|||
la = list(a.flatten()) |
|||
lb = list(b.flatten()) |
|||
for i in range(len(la)): |
|||
assert la[i] == lb[i] |
|||
|
|||
|
|||
def test_buffer(): |
|||
b = Buffer() |
|||
for fake_agent_id in range(4): |
|||
for step in range(9): |
|||
b[fake_agent_id]['vector_observation'].append( |
|||
[100 * fake_agent_id + 10 * step + 1, |
|||
100 * fake_agent_id + 10 * step + 2, |
|||
100 * fake_agent_id + 10 * step + 3] |
|||
) |
|||
b[fake_agent_id]['action'].append([100 * fake_agent_id + 10 * step + 4, |
|||
100 * fake_agent_id + 10 * step + 5]) |
|||
a = b[1]['vector_observation'].get_batch(batch_size=2, training_length=1, sequential=True) |
|||
assert_array(a, np.array([[171, 172, 173], [181, 182, 183]])) |
|||
a = b[2]['vector_observation'].get_batch(batch_size=2, training_length=3, sequential=True) |
|||
assert_array(a, np.array([ |
|||
[[231, 232, 233], [241, 242, 243], [251, 252, 253]], |
|||
[[261, 262, 263], [271, 272, 273], [281, 282, 283]] |
|||
])) |
|||
a = b[2]['vector_observation'].get_batch(batch_size=2, training_length=3, sequential=False) |
|||
assert_array(a, np.array([ |
|||
[[251, 252, 253], [261, 262, 263], [271, 272, 273]], |
|||
[[261, 262, 263], [271, 272, 273], [281, 282, 283]] |
|||
])) |
|||
b[4].reset_agent() |
|||
assert len(b[4]) == 0 |
|||
b.append_update_buffer(3, |
|||
batch_size=None, training_length=2) |
|||
b.append_update_buffer(2, |
|||
batch_size=None, training_length=2) |
|||
assert len(b.update_buffer['action']) == 10 |
|||
assert np.array(b.update_buffer['action']).shape == (10, 2, 2) |
|
|||
import json |
|||
import unittest.mock as mock |
|||
|
|||
import yaml |
|||
import pytest |
|||
import tensorflow as tf |
|||
|
|||
from unitytrainers.trainer_controller import TrainerController |
|||
from unitytrainers.buffer import Buffer |
|||
from unitytrainers.ppo.trainer import PPOTrainer |
|||
from unitytrainers.bc.trainer import BehavioralCloningTrainer |
|||
from unitytrainers.curriculum import Curriculum |
|||
from unitytrainers.exception import CurriculumError |
|||
from unityagents.exception import UnityEnvironmentException |
|||
from .mock_communicator import MockCommunicator |
|||
|
|||
|
|||
@pytest.fixture |
|||
def dummy_start(): |
|||
return '''{ "AcademyName": "RealFakeAcademy", |
|||
"resetParameters": {}, |
|||
"brainNames": ["RealFakeBrain"], |
|||
"externalBrainNames": ["RealFakeBrain"], |
|||
"logPath":"RealFakePath", |
|||
"apiNumber":"API-3", |
|||
"brainParameters": [{ |
|||
"vectorObservationSize": 3, |
|||
"numStackedVectorObservations" : 2, |
|||
"vectorActionSize": 2, |
|||
"memorySize": 0, |
|||
"cameraResolutions": [], |
|||
"vectorActionDescriptions": ["",""], |
|||
"vectorActionSpaceType": 1 |
|||
}] |
|||
}'''.encode() |
|||
|
|||
|
|||
@pytest.fixture |
|||
def dummy_config(): |
|||
return yaml.load( |
|||
''' |
|||
default: |
|||
trainer: ppo |
|||
batch_size: 32 |
|||
beta: 5.0e-3 |
|||
buffer_size: 512 |
|||
epsilon: 0.2 |
|||
gamma: 0.99 |
|||
hidden_units: 128 |
|||
lambd: 0.95 |
|||
learning_rate: 3.0e-4 |
|||
max_steps: 5.0e4 |
|||
normalize: true |
|||
num_epoch: 5 |
|||
num_layers: 2 |
|||
time_horizon: 64 |
|||
sequence_length: 64 |
|||
summary_freq: 1000 |
|||
use_recurrent: false |
|||
memory_size: 8 |
|||
use_curiosity: false |
|||
curiosity_strength: 0.0 |
|||
curiosity_enc_size: 1 |
|||
''') |
|||
|
|||
@pytest.fixture |
|||
def dummy_bc_config(): |
|||
return yaml.load( |
|||
''' |
|||
default: |
|||
trainer: imitation |
|||
brain_to_imitate: ExpertBrain |
|||
batches_per_epoch: 16 |
|||
batch_size: 32 |
|||
beta: 5.0e-3 |
|||
buffer_size: 512 |
|||
epsilon: 0.2 |
|||
gamma: 0.99 |
|||
hidden_units: 128 |
|||
lambd: 0.95 |
|||
learning_rate: 3.0e-4 |
|||
max_steps: 5.0e4 |
|||
normalize: true |
|||
num_epoch: 5 |
|||
num_layers: 2 |
|||
time_horizon: 64 |
|||
sequence_length: 64 |
|||
summary_freq: 1000 |
|||
use_recurrent: false |
|||
memory_size: 8 |
|||
use_curiosity: false |
|||
curiosity_strength: 0.0 |
|||
curiosity_enc_size: 1 |
|||
''') |
|||
|
|||
@pytest.fixture |
|||
def dummy_bad_config(): |
|||
return yaml.load( |
|||
''' |
|||
default: |
|||
trainer: incorrect_trainer |
|||
brain_to_imitate: ExpertBrain |
|||
batches_per_epoch: 16 |
|||
batch_size: 32 |
|||
beta: 5.0e-3 |
|||
buffer_size: 512 |
|||
epsilon: 0.2 |
|||
gamma: 0.99 |
|||
hidden_units: 128 |
|||
lambd: 0.95 |
|||
learning_rate: 3.0e-4 |
|||
max_steps: 5.0e4 |
|||
normalize: true |
|||
num_epoch: 5 |
|||
num_layers: 2 |
|||
time_horizon: 64 |
|||
sequence_length: 64 |
|||
summary_freq: 1000 |
|||
use_recurrent: false |
|||
memory_size: 8 |
|||
''') |
|||
|
|||
|
|||
@mock.patch('unityagents.UnityEnvironment.executable_launcher') |
|||
@mock.patch('unityagents.UnityEnvironment.get_communicator') |
|||
def test_initialization(mock_communicator, mock_launcher): |
|||
mock_communicator.return_value = MockCommunicator( |
|||
discrete_action=True, visual_inputs=1) |
|||
tc = TrainerController(' ', ' ', 1, None, True, True, False, 1, |
|||
1, 1, 1, '', "tests/test_unitytrainers.py", False) |
|||
assert(tc.env.brain_names[0] == 'RealFakeBrain') |
|||
|
|||
|
|||
@mock.patch('unityagents.UnityEnvironment.executable_launcher') |
|||
@mock.patch('unityagents.UnityEnvironment.get_communicator') |
|||
def test_load_config(mock_communicator, mock_launcher, dummy_config): |
|||
open_name = 'unitytrainers.trainer_controller' + '.open' |
|||
with mock.patch('yaml.load') as mock_load: |
|||
with mock.patch(open_name, create=True) as _: |
|||
mock_load.return_value = dummy_config |
|||
mock_communicator.return_value = MockCommunicator( |
|||
discrete_action=True, visual_inputs=1) |
|||
mock_load.return_value = dummy_config |
|||
tc = TrainerController(' ', ' ', 1, None, True, True, False, 1, |
|||
1, 1, 1, '','', False) |
|||
config = tc._load_config() |
|||
assert(len(config) == 1) |
|||
assert(config['default']['trainer'] == "ppo") |
|||
|
|||
|
|||
@mock.patch('unityagents.UnityEnvironment.executable_launcher') |
|||
@mock.patch('unityagents.UnityEnvironment.get_communicator') |
|||
def test_initialize_trainers(mock_communicator, mock_launcher, dummy_config, |
|||
dummy_bc_config, dummy_bad_config): |
|||
open_name = 'unitytrainers.trainer_controller' + '.open' |
|||
with mock.patch('yaml.load') as mock_load: |
|||
with mock.patch(open_name, create=True) as _: |
|||
mock_communicator.return_value = MockCommunicator( |
|||
discrete_action=True, visual_inputs=1) |
|||
tc = TrainerController(' ', ' ', 1, None, True, True, False, 1, 1, |
|||
1, 1, '', "tests/test_unitytrainers.py", |
|||
False) |
|||
|
|||
# Test for PPO trainer |
|||
mock_load.return_value = dummy_config |
|||
config = tc._load_config() |
|||
tf.reset_default_graph() |
|||
with tf.Session() as sess: |
|||
tc._initialize_trainers(config, sess) |
|||
assert(len(tc.trainers) == 1) |
|||
assert(isinstance(tc.trainers['RealFakeBrain'], PPOTrainer)) |
|||
|
|||
# Test for Behavior Cloning Trainer |
|||
mock_load.return_value = dummy_bc_config |
|||
config = tc._load_config() |
|||
tf.reset_default_graph() |
|||
with tf.Session() as sess: |
|||
tc._initialize_trainers(config, sess) |
|||
assert(isinstance(tc.trainers['RealFakeBrain'], BehavioralCloningTrainer)) |
|||
|
|||
# Test for proper exception when trainer name is incorrect |
|||
mock_load.return_value = dummy_bad_config |
|||
config = tc._load_config() |
|||
tf.reset_default_graph() |
|||
with tf.Session() as sess: |
|||
with pytest.raises(UnityEnvironmentException): |
|||
tc._initialize_trainers(config, sess) |
|
|||
import json |
|||
import yaml |
|||
import unittest.mock as mock |
|||
import pytest |
|||
|
|||
from unitytrainers.trainer_controller import TrainerController |
|||
from unitytrainers.buffer import Buffer |
|||
from unitytrainers.models import * |
|||
from unitytrainers.ppo.trainer import PPOTrainer |
|||
from unitytrainers.bc.trainer import BehavioralCloningTrainer |
|||
from unitytrainers.curriculum import Curriculum |
|||
from unitytrainers.exception import CurriculumError |
|||
from unityagents.exception import UnityEnvironmentException |
|||
from .mock_communicator import MockCommunicator |
|||
|
|||
dummy_start = '''{ |
|||
"AcademyName": "RealFakeAcademy", |
|||
"resetParameters": {}, |
|||
"brainNames": ["RealFakeBrain"], |
|||
"externalBrainNames": ["RealFakeBrain"], |
|||
"logPath":"RealFakePath", |
|||
"apiNumber":"API-3", |
|||
"brainParameters": [{ |
|||
"vectorObservationSize": 3, |
|||
"numStackedVectorObservations" : 2, |
|||
"vectorActionSize": 2, |
|||
"memorySize": 0, |
|||
"cameraResolutions": [], |
|||
"vectorActionDescriptions": ["",""], |
|||
"vectorActionSpaceType": 1 |
|||
}] |
|||
}'''.encode() |
|||
|
|||
|
|||
dummy_config = yaml.load(''' |
|||
default: |
|||
trainer: ppo |
|||
batch_size: 32 |
|||
beta: 5.0e-3 |
|||
buffer_size: 512 |
|||
epsilon: 0.2 |
|||
gamma: 0.99 |
|||
hidden_units: 128 |
|||
lambd: 0.95 |
|||
learning_rate: 3.0e-4 |
|||
max_steps: 5.0e4 |
|||
normalize: true |
|||
num_epoch: 5 |
|||
num_layers: 2 |
|||
time_horizon: 64 |
|||
sequence_length: 64 |
|||
summary_freq: 1000 |
|||
use_recurrent: false |
|||
memory_size: 8 |
|||
use_curiosity: false |
|||
curiosity_strength: 0.0 |
|||
curiosity_enc_size: 1 |
|||
''') |
|||
|
|||
dummy_bc_config = yaml.load(''' |
|||
default: |
|||
trainer: imitation |
|||
brain_to_imitate: ExpertBrain |
|||
batches_per_epoch: 16 |
|||
batch_size: 32 |
|||
beta: 5.0e-3 |
|||
buffer_size: 512 |
|||
epsilon: 0.2 |
|||
gamma: 0.99 |
|||
hidden_units: 128 |
|||
lambd: 0.95 |
|||
learning_rate: 3.0e-4 |
|||
max_steps: 5.0e4 |
|||
normalize: true |
|||
num_epoch: 5 |
|||
num_layers: 2 |
|||
time_horizon: 64 |
|||
sequence_length: 64 |
|||
summary_freq: 1000 |
|||
use_recurrent: false |
|||
memory_size: 8 |
|||
use_curiosity: false |
|||
curiosity_strength: 0.0 |
|||
curiosity_enc_size: 1 |
|||
''') |
|||
|
|||
dummy_bad_config = yaml.load(''' |
|||
default: |
|||
trainer: incorrect_trainer |
|||
brain_to_imitate: ExpertBrain |
|||
batches_per_epoch: 16 |
|||
batch_size: 32 |
|||
beta: 5.0e-3 |
|||
buffer_size: 512 |
|||
epsilon: 0.2 |
|||
gamma: 0.99 |
|||
hidden_units: 128 |
|||
lambd: 0.95 |
|||
learning_rate: 3.0e-4 |
|||
max_steps: 5.0e4 |
|||
normalize: true |
|||
num_epoch: 5 |
|||
num_layers: 2 |
|||
time_horizon: 64 |
|||
sequence_length: 64 |
|||
summary_freq: 1000 |
|||
use_recurrent: false |
|||
memory_size: 8 |
|||
''') |
|||
|
|||
|
|||
@mock.patch('unityagents.UnityEnvironment.executable_launcher') |
|||
@mock.patch('unityagents.UnityEnvironment.get_communicator') |
|||
def test_initialization(mock_communicator, mock_launcher): |
|||
mock_communicator.return_value = MockCommunicator( |
|||
discrete_action=True, visual_inputs=1) |
|||
tc = TrainerController(' ', ' ', 1, None, True, True, False, 1, |
|||
1, 1, 1, '', "tests/test_unitytrainers.py", False) |
|||
assert(tc.env.brain_names[0] == 'RealFakeBrain') |
|||
|
|||
|
|||
@mock.patch('unityagents.UnityEnvironment.executable_launcher') |
|||
@mock.patch('unityagents.UnityEnvironment.get_communicator') |
|||
def test_load_config(mock_communicator, mock_launcher): |
|||
open_name = 'unitytrainers.trainer_controller' + '.open' |
|||
with mock.patch('yaml.load') as mock_load: |
|||
with mock.patch(open_name, create=True) as _: |
|||
mock_load.return_value = dummy_config |
|||
mock_communicator.return_value = MockCommunicator( |
|||
discrete_action=True, visual_inputs=1) |
|||
mock_load.return_value = dummy_config |
|||
tc = TrainerController(' ', ' ', 1, None, True, True, False, 1, |
|||
1, 1, 1, '','', False) |
|||
config = tc._load_config() |
|||
assert(len(config) == 1) |
|||
assert(config['default']['trainer'] == "ppo") |
|||
|
|||
|
|||
@mock.patch('unityagents.UnityEnvironment.executable_launcher') |
|||
@mock.patch('unityagents.UnityEnvironment.get_communicator') |
|||
def test_initialize_trainers(mock_communicator, mock_launcher): |
|||
open_name = 'unitytrainers.trainer_controller' + '.open' |
|||
with mock.patch('yaml.load') as mock_load: |
|||
with mock.patch(open_name, create=True) as _: |
|||
mock_communicator.return_value = MockCommunicator( |
|||
discrete_action=True, visual_inputs=1) |
|||
tc = TrainerController(' ', ' ', 1, None, True, True, False, 1, |
|||
1, 1, 1, '', "tests/test_unitytrainers.py", False) |
|||
|
|||
# Test for PPO trainer |
|||
mock_load.return_value = dummy_config |
|||
config = tc._load_config() |
|||
tf.reset_default_graph() |
|||
with tf.Session() as sess: |
|||
tc._initialize_trainers(config, sess) |
|||
assert(len(tc.trainers) == 1) |
|||
assert(isinstance(tc.trainers['RealFakeBrain'], PPOTrainer)) |
|||
|
|||
# Test for Behavior Cloning Trainer |
|||
mock_load.return_value = dummy_bc_config |
|||
config = tc._load_config() |
|||
tf.reset_default_graph() |
|||
with tf.Session() as sess: |
|||
tc._initialize_trainers(config, sess) |
|||
assert(isinstance(tc.trainers['RealFakeBrain'], BehavioralCloningTrainer)) |
|||
|
|||
# Test for proper exception when trainer name is incorrect |
|||
mock_load.return_value = dummy_bad_config |
|||
config = tc._load_config() |
|||
tf.reset_default_graph() |
|||
with tf.Session() as sess: |
|||
with pytest.raises(UnityEnvironmentException): |
|||
tc._initialize_trainers(config, sess) |
|||
|
|||
|
|||
def assert_array(a, b): |
|||
assert a.shape == b.shape |
|||
la = list(a.flatten()) |
|||
lb = list(b.flatten()) |
|||
for i in range(len(la)): |
|||
assert la[i] == lb[i] |
|||
|
|||
|
|||
def test_buffer(): |
|||
b = Buffer() |
|||
for fake_agent_id in range(4): |
|||
for step in range(9): |
|||
b[fake_agent_id]['vector_observation'].append( |
|||
[100 * fake_agent_id + 10 * step + 1, |
|||
100 * fake_agent_id + 10 * step + 2, |
|||
100 * fake_agent_id + 10 * step + 3] |
|||
) |
|||
b[fake_agent_id]['action'].append([100 * fake_agent_id + 10 * step + 4, |
|||
100 * fake_agent_id + 10 * step + 5]) |
|||
a = b[1]['vector_observation'].get_batch(batch_size=2, training_length=1, sequential=True) |
|||
assert_array(a, np.array([[171, 172, 173], [181, 182, 183]])) |
|||
a = b[2]['vector_observation'].get_batch(batch_size=2, training_length=3, sequential=True) |
|||
assert_array(a, np.array([ |
|||
[[231, 232, 233], [241, 242, 243], [251, 252, 253]], |
|||
[[261, 262, 263], [271, 272, 273], [281, 282, 283]] |
|||
])) |
|||
a = b[2]['vector_observation'].get_batch(batch_size=2, training_length=3, sequential=False) |
|||
assert_array(a, np.array([ |
|||
[[251, 252, 253], [261, 262, 263], [271, 272, 273]], |
|||
[[261, 262, 263], [271, 272, 273], [281, 282, 283]] |
|||
])) |
|||
b[4].reset_agent() |
|||
assert len(b[4]) == 0 |
|||
b.append_update_buffer(3, |
|||
batch_size=None, training_length=2) |
|||
b.append_update_buffer(2, |
|||
batch_size=None, training_length=2) |
|||
assert len(b.update_buffer['action']) == 10 |
|||
assert np.array(b.update_buffer['action']).shape == (10, 2, 2) |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
pytest.main() |
撰写
预览
正在加载...
取消
保存
Reference in new issue