|
|
|
|
|
|
feed_dict = {model.batch_size: 2, |
|
|
|
model.sequence_length: 1, |
|
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], |
|
|
|
[3, 4, 5, 3, 4, 5]])} |
|
|
|
[3, 4, 5, 3, 4, 5]],), |
|
|
|
model.epsilon: np.array([[0, 1], [2, 3]])} |
|
|
|
sess.run(run_list, feed_dict=feed_dict) |
|
|
|
env.close() |
|
|
|
|
|
|
|
|
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], |
|
|
|
[3, 4, 5, 3, 4, 5]]), |
|
|
|
model.visual_in[0]: np.ones([2, 40, 30, 3]), |
|
|
|
model.visual_in[1]: np.ones([2, 40, 30, 3])} |
|
|
|
model.visual_in[1]: np.ones([2, 40, 30, 3]), |
|
|
|
model.epsilon: np.array([[0, 1], [2, 3]])} |
|
|
|
sess.run(run_list, feed_dict=feed_dict) |
|
|
|
env.close() |
|
|
|
|
|
|
|
|
|
|
[3, 4, 5, 3, 4, 5]]), |
|
|
|
model.visual_in[0]: np.ones([2, 40, 30, 3]), |
|
|
|
model.visual_in[1]: np.ones([2, 40, 30, 3]), |
|
|
|
model.action_masks: np.ones([2,2]) |
|
|
|
model.action_masks: np.ones([2, 2],) |
|
|
|
} |
|
|
|
sess.run(run_list, feed_dict=feed_dict) |
|
|
|
env.close() |
|
|
|
|
|
|
model.sequence_length: 1, |
|
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], |
|
|
|
[3, 4, 5, 3, 4, 5]]), |
|
|
|
model.action_masks: np.ones([2,2])} |
|
|
|
model.action_masks: np.ones([2, 2])} |
|
|
|
sess.run(run_list, feed_dict=feed_dict) |
|
|
|
env.close() |
|
|
|
|
|
|
|
|
|
|
model.memory_in: np.zeros((1, memory_size)), |
|
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], |
|
|
|
[3, 4, 5, 3, 4, 5]]), |
|
|
|
model.action_masks: np.ones([1,2])} |
|
|
|
model.action_masks: np.ones([1, 2])} |
|
|
|
sess.run(run_list, feed_dict=feed_dict) |
|
|
|
env.close() |
|
|
|
|
|
|
|
|
|
|
model.sequence_length: 2, |
|
|
|
model.memory_in: np.zeros((1, memory_size)), |
|
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], |
|
|
|
[3, 4, 5, 3, 4, 5]])} |
|
|
|
[3, 4, 5, 3, 4, 5]]), |
|
|
|
model.epsilon: np.array([[0, 1]])} |
|
|
|
sess.run(run_list, feed_dict=feed_dict) |
|
|
|
env.close() |
|
|
|
|
|
|
|
|
|
|
[3, 4, 5, 3, 4, 5]]), |
|
|
|
model.next_vector_in: np.array([[1, 2, 3, 1, 2, 3], |
|
|
|
[3, 4, 5, 3, 4, 5]]), |
|
|
|
model.output: [[0.0, 0.0], [0.0, 0.0]]} |
|
|
|
model.output: [[0.0, 0.0], [0.0, 0.0]], |
|
|
|
model.epsilon: np.array([[0, 1], [2, 3]])} |
|
|
|
sess.run(run_list, feed_dict=feed_dict) |
|
|
|
env.close() |
|
|
|
|
|
|
|
|
|
|
model.visual_in[1]: np.ones([2, 40, 30, 3]), |
|
|
|
model.next_visual_in[0]: np.ones([2, 40, 30, 3]), |
|
|
|
model.next_visual_in[1]: np.ones([2, 40, 30, 3]), |
|
|
|
model.action_masks: np.ones([2,2]) |
|
|
|
model.action_masks: np.ones([2, 2]) |
|
|
|
} |
|
|
|
sess.run(run_list, feed_dict=feed_dict) |
|
|
|
env.close() |
|
|
|
|
|
|
model.visual_in[0]: np.ones([2, 40, 30, 3]), |
|
|
|
model.visual_in[1]: np.ones([2, 40, 30, 3]), |
|
|
|
model.next_visual_in[0]: np.ones([2, 40, 30, 3]), |
|
|
|
model.next_visual_in[1]: np.ones([2, 40, 30, 3]) |
|
|
|
model.next_visual_in[1]: np.ones([2, 40, 30, 3]), |
|
|
|
model.epsilon: np.array([[0, 1], [2, 3]]) |
|
|
|
} |
|
|
|
sess.run(run_list, feed_dict=feed_dict) |
|
|
|
env.close() |
|
|
|