浏览代码

master -> main. (#5010)

/develop/gail-srl-hack
GitHub 4 年前
当前提交
260b367c
共有 28 个文件被更改,包括 77 次插入77 次删除
  1. 6
      .github/PULL_REQUEST_TEMPLATE.md
  2. 2
      .github/workflows/pre-commit.yml
  3. 2
      .github/workflows/publish_pypi.yaml
  4. 2
      .github/workflows/pytest.yml
  5. 2
      .yamato/com.unity.ml-agents-performance.yml
  6. 4
      .yamato/com.unity.ml-agents-test.yml
  7. 2
      .yamato/compressed-sensor-test.yml
  8. 2
      .yamato/gym-interface-test.yml
  9. 2
      .yamato/protobuf-generation-test.yml
  10. 2
      .yamato/pytest-gpu.yml
  11. 2
      .yamato/python-ll-api-test.yml
  12. 2
      .yamato/standalone-build-test.yml
  13. 2
      .yamato/standalone-build-webgl-test.yml
  14. 2
      .yamato/training-backcompat-tests.yml
  15. 2
      .yamato/training-int-tests.yml
  16. 4
      README.md
  17. 12
      com.unity.ml-agents/CHANGELOG.md
  18. 4
      com.unity.ml-agents/CONTRIBUTING.md
  19. 2
      docs/Installation-Anaconda-Windows.md
  20. 4
      docs/Installation.md
  21. 2
      docs/Migrating.md
  22. 2
      docs/localized/KR/docs/Installation-Anaconda-Windows.md
  23. 6
      docs/localized/RU/README.md
  24. 30
      docs/localized/RU/docs/Начало работы.md
  25. 32
      docs/localized/RU/docs/Установка.md
  26. 2
      ml-agents/setup.py
  27. 16
      utils/make_readme_table.py
  28. 2
      utils/validate_release_links.py

6
.github/PULL_REQUEST_TEMPLATE.md


### Checklist
- [ ] Added tests that prove my fix is effective or that my feature works
- [ ] Updated the [changelog](https://github.com/Unity-Technologies/ml-agents/blob/master/com.unity.ml-agents/CHANGELOG.md) (if applicable)
- [ ] Updated the [documentation](https://github.com/Unity-Technologies/ml-agents/tree/master/docs) (if applicable)
- [ ] Updated the [migration guide](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Migrating.md) (if applicable)
- [ ] Updated the [changelog](https://github.com/Unity-Technologies/ml-agents/blob/main/com.unity.ml-agents/CHANGELOG.md) (if applicable)
- [ ] Updated the [documentation](https://github.com/Unity-Technologies/ml-agents/tree/main/docs) (if applicable)
- [ ] Updated the [migration guide](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Migrating.md) (if applicable)
### Other comments

2
.github/workflows/pre-commit.yml


on:
pull_request:
push:
branches: [master]
branches: [main]
jobs:
pre-commit:

2
.github/workflows/publish_pypi.yaml


package-path: [ml-agents, ml-agents-envs, gym-unity]
steps:
- uses: actions/checkout@master
- uses: actions/checkout@main
- name: Set up Python 3.7
uses: actions/setup-python@v1
with:

2
.github/workflows/pytest.yml


- 'test_requirements.txt'
- '.github/workflows/pytest.yml'
push:
branches: [master]
branches: [main]
jobs:
pytest:

2
.yamato/com.unity.ml-agents-performance.yml


triggers:
cancel_old_ci: true
recurring:
- branch: master
- branch: main
frequency: daily
artifacts:
logs:

4
.yamato/com.unity.ml-agents-test.yml


triggers:
cancel_old_ci: true
recurring:
- branch: master
- branch: main
frequency: daily
{% for package in packages %}

cancel_old_ci: true
{% if platform.name == "linux" %}
expression: |
(pull_request.target eq "master" OR
(pull_request.target eq "main" OR
pull_request.target match "release.+") AND
NOT pull_request.draft AND
(pull_request.changes.any match "com.unity.ml-agents/**" OR

2
.yamato/compressed-sensor-test.yml


cancel_old_ci: true
{% if editor.extra_test == "sensor" %}
expression: |
(pull_request.target eq "master" OR
(pull_request.target eq "main" OR
pull_request.target match "release.+") AND
NOT pull_request.draft AND
(pull_request.changes.any match "com.unity.ml-agents/**" OR

2
.yamato/gym-interface-test.yml


cancel_old_ci: true
{% if editor.extra_test == "gym" %}
expression: |
(pull_request.target eq "master" OR
(pull_request.target eq "main" OR
pull_request.target match "release.+") AND
NOT pull_request.draft AND
(pull_request.changes.any match "com.unity.ml-agents/**" OR

2
.yamato/protobuf-generation-test.yml


triggers:
cancel_old_ci: true
expression: |
(pull_request.target eq "master" OR
(pull_request.target eq "main" OR
pull_request.target match "release.+") AND
NOT pull_request.draft AND
(pull_request.changes.any match "protobuf-definitions/**" OR

2
.yamato/pytest-gpu.yml


triggers:
cancel_old_ci: true
recurring:
- branch: master
- branch: main
frequency: daily
artifacts:
logs:

2
.yamato/python-ll-api-test.yml


cancel_old_ci: true
{% if editor.extra_test == "llapi" %}
expression: |
(pull_request.target eq "master" OR
(pull_request.target eq "main" OR
pull_request.target match "release.+") AND
NOT pull_request.draft AND
(pull_request.changes.any match "com.unity.ml-agents/**" OR

2
.yamato/standalone-build-test.yml


triggers:
cancel_old_ci: true
expression: |
(pull_request.target eq "master" OR
(pull_request.target eq "main" OR
pull_request.target match "release.+") AND
NOT pull_request.draft AND
(pull_request.changes.any match "com.unity.ml-agents/**" OR

2
.yamato/standalone-build-webgl-test.yml


triggers:
cancel_old_ci: true
recurring:
- branch: master
- branch: main
frequency: weekly
artifacts:
logs:

2
.yamato/training-backcompat-tests.yml


triggers:
cancel_old_ci: true
recurring:
- branch: master
- branch: main
frequency: daily
artifacts:
logs:

2
.yamato/training-int-tests.yml


triggers:
cancel_old_ci: true
expression: |
(pull_request.target eq "master" OR
(pull_request.target eq "main" OR
pull_request.target match "release.+") AND
NOT pull_request.draft AND
(pull_request.changes.any match "com.unity.ml-agents/**" OR

4
README.md


[here](https://github.com/Unity-Technologies/ml-agents/tree/release_13_docs/docs/Readme.md)
to get started with the latest release of ML-Agents.**
The table below lists all our releases, including our `master` branch which is
The table below lists all our releases, including our `main` branch which is
under active development and may be unstable. A few helpful guidelines:
- The [Versioning page](docs/Versioning.md) overviews how we manage our GitHub
releases and the versioning process for each of the ML-Agents components.

| **Version** | **Release Date** | **Source** | **Documentation** | **Download** | **Python Package** | **Unity Package** |
|:-------:|:------:|:-------------:|:-------:|:------------:|:------------:|:------------:|
| **master (unstable)** | -- | [source](https://github.com/Unity-Technologies/ml-agents/tree/master) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/master/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/master.zip) | -- | -- |
| **main (unstable)** | -- | [source](https://github.com/Unity-Technologies/ml-agents/tree/main) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/main/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/main.zip) | -- | -- |
| **Release 13** | **February 17, 2021** | **[source](https://github.com/Unity-Technologies/ml-agents/tree/release_13)** | **[docs](https://github.com/Unity-Technologies/ml-agents/tree/release_13_docs/docs/Readme.md)** | **[download](https://github.com/Unity-Technologies/ml-agents/archive/release_13.zip)** | **[0.24.0](https://pypi.org/project/mlagents/0.24.0/)** | **[1.8.0](https://docs.unity3d.com/Packages/com.unity.ml-agents@1.8/manual/index.html)** |
| **Release 12** | December 22, 2020 | [source](https://github.com/Unity-Technologies/ml-agents/tree/release_12) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/release_12_docs/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/release_12.zip) | [0.23.0](https://pypi.org/project/mlagents/0.23.0/) | [1.7.2](https://docs.unity3d.com/Packages/com.unity.ml-agents@1.7/manual/index.html) |
| **Release 11** | December 21, 2020 | [source](https://github.com/Unity-Technologies/ml-agents/tree/release_11) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/release_11_docs/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/release_11.zip) | [0.23.0](https://pypi.org/project/mlagents/0.23.0/) | [1.7.0](https://docs.unity3d.com/Packages/com.unity.ml-agents@1.7/manual/index.html) |

12
com.unity.ml-agents/CHANGELOG.md


- Added a `--torch-device` commandline option to `mlagents-learn`, which sets the default
[`torch.device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.torch.device) used for training. (#4888)
- The `--cpu` commandline option had no effect and was removed. Use `--torch-device=cpu` to force CPU training. (#4888)
- The `mlagents_env` API has changed, `BehaviorSpec` now has a `observation_specs` property containing a list of `ObservationSpec`. For more information on `ObservationSpec` see [here](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Python-API.md#behaviorspec). (#4763, #4825)
- The `mlagents_env` API has changed, `BehaviorSpec` now has a `observation_specs` property containing a list of `ObservationSpec`. For more information on `ObservationSpec` see [here](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Python-API.md#behaviorspec). (#4763, #4825)
### Bug Fixes
#### com.unity.ml-agents (C#)

#### com.unity.ml-agents (C#)
#### ml-agents / ml-agents-envs / gym-unity (Python)
- PyTorch trainers are now the default. See the
[installation docs](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Installation.md) for
[installation docs](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Installation.md) for
more information on installing PyTorch. For the time being, TensorFlow is still available;
you can use the TensorFlow backend by adding `--tensorflow` to the CLI, or
adding `framework: tensorflow` in the configuration YAML. (#4517)

- The Barracuda dependency was upgraded to 1.1.2 (#4571)
- Utilities were added to `com.unity.ml-agents.extensions` to make it easier to
integrate with match-3 games. See the [readme](https://github.com/Unity-Technologies/ml-agents/blob/master/com.unity.ml-agents.extensions/Documentation~/Match3.md)
integrate with match-3 games. See the [readme](https://github.com/Unity-Technologies/ml-agents/blob/main/com.unity.ml-agents.extensions/Documentation~/Match3.md)
for more details. (#4515)
#### ml-agents / ml-agents-envs / gym-unity (Python)
- The `action_probs` node is no longer listed as an output in TensorFlow models (#4613).

#### ml-agents / ml-agents-envs / gym-unity (Python)
- Added the Random Network Distillation (RND) intrinsic reward signal to the Pytorch
trainers. To use RND, add a `rnd` section to the `reward_signals` section of your
yaml configuration file. [More information here](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Training-Configuration-File.md#rnd-intrinsic-reward) (#4473)
yaml configuration file. [More information here](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Training-Configuration-File.md#rnd-intrinsic-reward) (#4473)
### Minor Changes
#### com.unity.ml-agents (C#)
- Stacking for compressed observations is now supported. An additional setting

### Major Changes
#### ml-agents / ml-agents-envs / gym-unity (Python)
- The Parameter Randomization feature has been refactored to enable sampling of new parameters per episode to improve robustness. The
`resampling-interval` parameter has been removed and the config structure updated. More information [here](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Training-ML-Agents.md). (#4065)
`resampling-interval` parameter has been removed and the config structure updated. More information [here](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Training-ML-Agents.md). (#4065)
[here](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Training-ML-Agents.md).(#4160)
[here](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Training-ML-Agents.md).(#4160)
### Minor Changes
#### com.unity.ml-agents (C#)

4
com.unity.ml-agents/CONTRIBUTING.md


## Communication
First, please read through our
[code of conduct](https://github.com/Unity-Technologies/ml-agents/blob/master/CODE_OF_CONDUCT.md),
[code of conduct](https://github.com/Unity-Technologies/ml-agents/blob/main/CODE_OF_CONDUCT.md),
as we expect all our contributors to follow it.
Second, before starting on a project that you intend to contribute to the

## Git Branches
The master branch corresponds to the most recent version of the project. Note
The main branch corresponds to the most recent version of the project. Note
that this may be newer that the
[latest release](https://github.com/Unity-Technologies/ml-agents/releases/tag/latest_release).

2
docs/Installation-Anaconda-Windows.md


```
The `--branch release_13` option will switch to the tag of the latest stable
release. Omitting that will get the `master` branch which is potentially
release. Omitting that will get the `main` branch which is potentially
unstable.
If you don't want to use Git, you can find download links on the

4
docs/Installation.md


```
The `--branch release_13` option will switch to the tag of the latest stable
release. Omitting that will get the `master` branch which is potentially
release. Omitting that will get the `main` branch which is potentially
unstable.
#### Advanced: Local Installation for Development

back, make sure to clone the `master` branch (by omitting `--branch release_13`
back, make sure to clone the `main` branch (by omitting `--branch release_13`
from the command above). See our
[Contributions Guidelines](../com.unity.ml-agents/CONTRIBUTING.md) for more
information on contributing to the ML-Agents Toolkit.

2
docs/Migrating.md


- The Parameter Randomization feature has been merged with the Curriculum feature. It is now possible to specify a sampler
in the lesson of a Curriculum. Curriculum has been refactored and is now specified at the level of the parameter, not the
behavior. More information
[here](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Training-ML-Agents.md).(#4160)
[here](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Training-ML-Agents.md).(#4160)
### Steps to Migrate
- The configuration format for curriculum and parameter randomization has changed. To upgrade your configuration files,

2
docs/localized/KR/docs/Installation-Anaconda-Windows.md


git clone https://github.com/Unity-Technologies/ml-agents.git
```
���� Git�� �����ϰ� ���� �ʴٸ� ������ [��ũ](https://github.com/Unity-Technologies/ml-agents/archive/master.zip)���� ���� ������ �ٿ��ε� �� �� �ֽ��ϴ�.
���� Git�� �����ϰ� ���� �ʴٸ� ������ [��ũ](https://github.com/Unity-Technologies/ml-agents/archive/main.zip)���� ���� ������ �ٿ��ε� �� �� �ֽ��ϴ�.
`UnitySDK` ���� �����丮���� ������Ʈ�� �߰��� ����Ƽ �ּ��� ���ԵǾ� �ֽ��ϴ�. ���� �����ϴµ� ������ �Ǵ� ���� [���� ȯ��](Learning-Environment-Examples.md)���� �ֽ��ϴ�.

6
docs/localized/RU/README.md


<img src="https://github.com/Unity-Technologies/ml-agents/blob/master/docs/images/image-banner.png" align="middle" width="3000"/>
<img src="https://github.com/Unity-Technologies/ml-agents/blob/main/docs/images/image-banner.png" align="middle" width="3000"/>
# Unity ML-Agents Toolkit Version Release 7

См. [здесь](https://github.com/Unity-Technologies/ml-agents/tree/release_7_docs/docs/Readme.md),
чтобы начать работать с самой последней версий ML-Agents.**
Таблица внизу - список всех наших релизов, включая master ветку, над которой мы ведем активную работу
Таблица внизу - список всех наших релизов, включая main ветку, над которой мы ведем активную работу
и которая может быть нестабильной. Полезная информация:
[Управление версиями](docs/Versioning.md) - описание того, как мы работам с GitHub.

| **Version** | **Дата релиза** | **Source** | **Документация** | **Загрузка** |
|:-------:|:------:|:-------------:|:-------:|:------------:|
| **master (unstable)** | -- | [source](https://github.com/Unity-Technologies/ml-agents/tree/master) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/master/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/master.zip) |
| **main (unstable)** | -- | [source](https://github.com/Unity-Technologies/ml-agents/tree/main) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/main/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/main.zip) |
| **Release 7** | **16 Сентября, 2020** | **[source](https://github.com/Unity-Technologies/ml-agents/tree/release_7)** | **[docs](https://github.com/Unity-Technologies/ml-agents/tree/release_7_docs/docs/Readme.md)** | **[download](https://github.com/Unity-Technologies/ml-agents/archive/release_7.zip)** |
| **Release 6** | 12 Августа, 2020 | [source](https://github.com/Unity-Technologies/ml-agents/tree/release_6) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/release_6_docs/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/release_6.zip) |
| **Release 5** | 31 Июля, 2020 | [source](https://github.com/Unity-Technologies/ml-agents/tree/release_5) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/release_5_docs/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/release_5.zip) |

30
docs/localized/RU/docs/Начало работы.md


# Начало работы
В данной статье мы разберем шаг за шагом один из [наших примеров](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Examples.md),
В данной статье мы разберем шаг за шагом один из [наших примеров](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Learning-Environment-Examples.md),
[Background: Unity](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Background-Unity.md).
[Background: Unity](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Background-Unity.md).
[Background: Machine Learning](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Background-Machine-Learning.md).
[Background: Machine Learning](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Background-Machine-Learning.md).
![Головы с мячами](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/images/balance.png)
![Головы с мячами](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/images/balance.png)
Нашей сценой будет **3D Balance Ball**. Агенты в ней - синие кубы-платформы, у каждого
на голове по мячу. Все они - копии друг друга. Каждый куб-агент пытается

## Установка
Если вы еще не установили ML-Agents, следуйте этой
инструкции по установке(https://github.com/Unity-Technologies/ml-agents/tree/master/docs/localized/RU/docs/Установка.md).
инструкции по установке(https://github.com/Unity-Technologies/ml-agents/tree/main/docs/localized/RU/docs/Установка.md).
1. Далее, откройте в Unity Project, в котором находятся примеры:
1. Запустите Unity Hub

со _средой_, собирая о ней данные. В Unity, среда это сцена (scene), в которой есть один
или более объектов - Агентов, а также, конечно, и другие объекты, с которыми взаимодействует агент.
![Unity-Editor](https://raw.githubusercontent.com/Unity-Technologies/ml-agents/master/docs/images/mlagents-3DBallHierarchy.png)
![Unity-Editor](https://raw.githubusercontent.com/Unity-Technologies/ml-agents/main/docs/images/mlagents-3DBallHierarchy.png)
Обратите внимание: В Unity каждый объект сцены - это объект класса GameObject. GameObject это
буквально контейнер для всего, что касается объекта: его физики, графики, поведения и пр.,

## Запуск заранее обученной (предтренированной) модели
Мы включили в свои примеры заранее обученные модели (файлы с расширением `.nn`)
и использовали [Unity Inference Engine](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Unity-Inference-Engine.md),
и использовали [Unity Inference Engine](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Unity-Inference-Engine.md),
чтобы запустить их в Unity. В этом разделе мы воспользуемся одной
из таких моделей для 3D Ball.

Поэтому при необходимости внести изменения в каждую из платформ,
вы можете просто изменить сам префаб вместо этого.
![Platform Prefab](https://raw.githubusercontent.com/Unity-Technologies/ml-agents/master/docs/images/platform_prefab.png)
![Platform Prefab](https://raw.githubusercontent.com/Unity-Technologies/ml-agents/main/docs/images/platform_prefab.png)
![3dball learning brain](https://raw.githubusercontent.com/Unity-Technologies/ml-agents/master/docs/images/3dball_learning_brain.png)
![3dball learning brain](https://raw.githubusercontent.com/Unity-Technologies/ml-agents/main/docs/images/3dball_learning_brain.png)
1. Теперь каждый `Агент` на каждой платформе `3DBall` в окне **Hierarchy**
должен содержать модель поведения **3DBall** в `Behavior Parameters`.

фазы обучения к другой. Это сигнал, что процесс обучения проходит успешно.
**Примечание:** Вы можете обучать агента, используя вместо Editor’a исполняемые файлы.
См. инструкцию [Using an Executable](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Executable.md).
См. инструкцию [Using an Executable](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Learning-Environment-Executable.md).
### Наблюдение за тренировочным процессом

(среда/суммарная награда за эпизод), которая должно увеличиваться в процессе обучения,
приближаясь к 100 - максимально возможное значение, которого может достигнуть агент.
![Example TensorBoard Run](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/images/mlagents-TensorBoard.png)
![Example TensorBoard Run](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/images/mlagents-TensorBoard.png)
## Внедрение модели в среду Unity

### Следующие шаги
- Для дополнительной информации о ML-Agents Toolkit,
см. [Обзор ML-Agents Toolkit](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/ML-Agents-Overview.md).
- [Создание своих сцен](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Create-New.md)
см. [Обзор ML-Agents Toolkit](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/ML-Agents-Overview.md).
- [Создание своих сцен](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Learning-Environment-Create-New.md)
примера в [ML-Agents - Example Environments](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Examples.md)
- Информация про различные опции обучения - [Training ML-Agents](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Training-ML-Agents.md)
примера в [ML-Agents - Example Environments](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Learning-Environment-Examples.md)
- Информация про различные опции обучения - [Training ML-Agents](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Training-ML-Agents.md)

32
docs/localized/RU/docs/Установка.md


ML-Agents Toolkit состоит из нескольких компонентов:
- Специальный пакет Unity ([`com.unity.ml-agents`](https://github.com/Unity-Technologies/ml-agents/tree/master/com.unity.ml-agents))
- Специальный пакет Unity ([`com.unity.ml-agents`](https://github.com/Unity-Technologies/ml-agents/tree/main/com.unity.ml-agents))
- ([`mlagents`](https://github.com/Unity-Technologies/ml-agents/tree/master/ml-agents)) - пакет с алгоритмами машинного обучения,
- ([`mlagents`](https://github.com/Unity-Technologies/ml-agents/tree/main/ml-agents)) - пакет с алгоритмами машинного обучения,
- ([`mlagents_envs`](https://github.com/Unity-Technologies/ml-agents/tree/master/ml-agents-envs) содержит Python
- ([`mlagents_envs`](https://github.com/Unity-Technologies/ml-agents/tree/main/ml-agents-envs) содержит Python
- ([`gym_unity`](https://github.com/Unity-Technologies/ml-agents/tree/master/gym-unity)) - позволяет обернуть вашу сцену
- ([`gym_unity`](https://github.com/Unity-Technologies/ml-agents/tree/main/gym-unity)) - позволяет обернуть вашу сцену
- Unity [Project](https://github.com/Unity-Technologies/ml-agents/tree/master/Project),
содержащий [примеры сцены](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Examples.md),
- Unity [Project](https://github.com/Unity-Technologies/ml-agents/tree/main/Project),
содержащий [примеры сцены](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Learning-Environment-Examples.md),
где реализованы различные возможности ML-Agents для наглядности.
Итого, чтобы установить и использовать ML-Agents, вам нужно:

Вам нужно будет склонировать репозиторий, если вы планируете вносить изменения
или что-то добавлять в ML-Agents для своих целей. Или вы планируете сделать
эти изменения общедоступными, пожалуйста, склонируйте master branch
эти изменения общедоступными, пожалуйста, склонируйте main branch
Далее см. [гайд про публикацию правок](https://github.com/Unity-Technologies/ml-agents/blob/master/com.unity.ml-agents/CONTRIBUTING.md).
Далее см. [гайд про публикацию правок](https://github.com/Unity-Technologies/ml-agents/blob/main/com.unity.ml-agents/CONTRIBUTING.md).
### Установка пакета `com.unity.ml-agents` для Unity
Unity ML-Agents C# SDK это пакет Unity. Вы можете установить его прямо из пакетного менеджера,

А в Unity 2019.3 она - сверху слева.
<p align="center">
<img src="https://raw.githubusercontent.com/Unity-Technologies/ml-agents/master/docs/images/unity_package_manager_window.png"
<img src="https://raw.githubusercontent.com/Unity-Technologies/ml-agents/main/docs/images/unity_package_manager_window.png"
<img src="https://raw.githubusercontent.com/Unity-Technologies/ml-agents/master/docs/images/unity_package_json.png"
<img src="https://raw.githubusercontent.com/Unity-Technologies/ml-agents/main/docs/images/unity_package_json.png"
alt="package.json"
height="300"
border="10" />

Virtual Environments позволяет управлять ранее установленными версиями так,
что для одного проекта будут одни зависимости, а для другого - другие на каждой
из операционных систем - Mac / Windows / Linux.
Гайд по [Virtual Environments](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Using-Virtual-Environment.md).
Гайд по [Virtual Environments](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Using-Virtual-Environment.md).
Чтобы установить `mlagents` Python, активируйте вашу виртуальную среду
и выполните следующее в командной строке:

команду `mlagents-learn --help`, после
исполнения которой вы увидите набор доступных команд `mlagents-learn`.
Устанавливая mlagents, вы также устанавливаете и все то, на базе чего он сделан -
см. [setup.py file](https://github.com/Unity-Technologies/ml-agents/blob/master/ml-agents/setup.py).
В том числе [TensorFlow](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Background-TensorFlow.md)
см. [setup.py file](https://github.com/Unity-Technologies/ml-agents/blob/main/ml-agents/setup.py).
В том числе [TensorFlow](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Background-TensorFlow.md)
(требует поддержки CPU w/ AVX).
#### Продвинутая локальная установка для разработки

### Следующие шаги
Гайд ["Начало работы"](https://github.com/Unity-Technologies/ml-agents/tree/master/docs/localized/RU/docs/Начало-работы.md)
Гайд ["Начало работы"](https://github.com/Unity-Technologies/ml-agents/tree/main/docs/localized/RU/docs/Начало-работы.md)
содержит в себе серию коротких обучающих уроков по настройке ML-Agents внутри Unity
и запуск предобученной модели, а также уроки по созданию и дополнению сцен,
где будет обучаться ваш агент.

Если у вас возникли трудности с ML-Agents, пожалуйста, обратитесь к [FAQ](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/FAQ.md)
и к странице [Limitations](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Limitations.md).
Если у вас возникли трудности с ML-Agents, пожалуйста, обратитесь к [FAQ](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/FAQ.md)
и к странице [Limitations](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Limitations.md).
Если это не решило вашу проблему, создайте запрос [здесь](https://github.com/Unity-Technologies/ml-agents/issues),
предоставив информацию о операционной системе, версии Python и сообщение об ошибки (если оно есть).

2
ml-agents/setup.py


"protobuf>=3.6",
"pyyaml>=3.1.0",
# Windows ver. of PyTorch doesn't work from PyPi. Installation:
# https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Installation.md#windows-installing-pytorch
# https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Installation.md#windows-installing-pytorch
'torch>=1.6.0,<1.8.0;platform_system!="Windows"',
"tensorboard>=1.15",
# cattrs 1.1.0 dropped support for python 3.6.

16
utils/make_readme_table.py


f"{bold_str}[docs]({version_info.doc_link}){bold_str}",
f"{bold_str}[download]({version_info.download_link}){bold_str}",
]
if version_info.is_master:
if version_info.is_main:
cells.append("--") # python
cells.append("--") # Unity
else:

return LooseVersion(self.python_verion)
@property
def is_master(self) -> bool:
return self.release_tag == "master"
def is_main(self) -> bool:
return self.release_tag == "main"
if self.is_master:
if self.is_main:
return datetime.today()
return datetime.strptime(self.release_date, "%B %d, %Y")

"""
if self.is_verified:
return f"Verified Package {self.csharp_version}"
elif self.is_master:
return "master (unstable)"
elif self.is_main:
return "main (unstable)"
else:
return self.release_tag.replace("_", " ").title()

versions = [
ReleaseInfo("master", "master", "master", "--"),
ReleaseInfo("main", "main", "main", "--"),
ReleaseInfo("release_1", "1.0.0", "0.16.0", "April 30, 2020"),
ReleaseInfo("release_2", "1.0.2", "0.16.1", "May 20, 2020"),
ReleaseInfo("release_3", "1.1.0", "0.17.0", "June 10, 2020"),

highlight_versions.add([v for v in sorted_versions if v.is_verified][0])
# Highlight the most recent regular version
highlight_versions.add(
[v for v in sorted_versions if (not v.is_verified and not v.is_master)][0]
[v for v in sorted_versions if (not v.is_verified and not v.is_main)][0]
)
count_by_verified = Counter()

2
utils/validate_release_links.py


def get_release_tag() -> Optional[str]:
"""
Returns the release tag for the mlagents python package.
This will be None on the master branch.
This will be None on the main branch.
:return:
"""
with open(TRAINER_INIT_FILE) as f:

正在加载...
取消
保存