vincentpierre
4 年前
当前提交
25454a48
共有 3 个文件被更改,包括 2 次插入 和 107 次删除
-
2ml-agents/mlagents/trainers/torch/components/reward_providers/curiosity_reward_provider.py
-
2ml-agents/mlagents/trainers/torch/components/reward_providers/gail_reward_provider.py
-
105ml-agents/mlagents/trainers/tests/torch/test_saver.py
|
|||
import pytest |
|||
from unittest import mock |
|||
import os |
|||
|
|||
import numpy as np |
|||
import torch |
|||
from mlagents.trainers.policy.torch_policy import TorchPolicy |
|||
from mlagents.trainers.ppo.optimizer_torch import TorchPPOOptimizer |
|||
from mlagents.trainers.saver.torch_saver import TorchSaver |
|||
from mlagents.trainers.settings import TrainerSettings |
|||
from mlagents.trainers.tests import mock_brain as mb |
|||
from mlagents.trainers.tests.torch.test_policy import create_policy_mock |
|||
|
|||
|
|||
def test_register(tmp_path): |
|||
trainer_params = TrainerSettings() |
|||
saver = TorchSaver(trainer_params, tmp_path) |
|||
|
|||
opt = mock.Mock(spec=TorchPPOOptimizer) |
|||
opt.get_modules = mock.Mock(return_value={}) |
|||
saver.register(opt) |
|||
assert saver.policy is None |
|||
|
|||
trainer_params = TrainerSettings() |
|||
policy = create_policy_mock(trainer_params) |
|||
opt.get_modules = mock.Mock(return_value={}) |
|||
saver.register(policy) |
|||
assert saver.policy is not None |
|||
|
|||
|
|||
def test_load_save(tmp_path): |
|||
path1 = os.path.join(tmp_path, "runid1") |
|||
path2 = os.path.join(tmp_path, "runid2") |
|||
trainer_params = TrainerSettings() |
|||
policy = create_policy_mock(trainer_params) |
|||
saver = TorchSaver(trainer_params, path1) |
|||
saver.register(policy) |
|||
saver.initialize_or_load(policy) |
|||
policy.set_step(2000) |
|||
|
|||
mock_brain_name = "MockBrain" |
|||
saver.save_checkpoint(mock_brain_name, 2000) |
|||
assert len(os.listdir(tmp_path)) > 0 |
|||
|
|||
# Try load from this path |
|||
saver2 = TorchSaver(trainer_params, path1, load=True) |
|||
policy2 = create_policy_mock(trainer_params) |
|||
saver2.register(policy2) |
|||
saver2.initialize_or_load(policy2) |
|||
_compare_two_policies(policy, policy2) |
|||
assert policy2.get_current_step() == 2000 |
|||
|
|||
# Try initialize from path 1 |
|||
trainer_params.init_path = path1 |
|||
saver3 = TorchSaver(trainer_params, path2) |
|||
policy3 = create_policy_mock(trainer_params) |
|||
saver3.register(policy3) |
|||
saver3.initialize_or_load(policy3) |
|||
_compare_two_policies(policy2, policy3) |
|||
# Assert that the steps are 0. |
|||
assert policy3.get_current_step() == 0 |
|||
|
|||
|
|||
# TorchPolicy.evalute() returns log_probs instead of all_log_probs like tf does. |
|||
# resulting in indeterministic results for testing. |
|||
# So here use sample_actions instead. |
|||
def _compare_two_policies(policy1: TorchPolicy, policy2: TorchPolicy) -> None: |
|||
""" |
|||
Make sure two policies have the same output for the same input. |
|||
""" |
|||
decision_step, _ = mb.create_steps_from_behavior_spec( |
|||
policy1.behavior_spec, num_agents=1 |
|||
) |
|||
vec_vis_obs, masks = policy1._split_decision_step(decision_step) |
|||
vec_obs = [torch.as_tensor(vec_vis_obs.vector_observations)] |
|||
vis_obs = [torch.as_tensor(vis_ob) for vis_ob in vec_vis_obs.visual_observations] |
|||
memories = torch.as_tensor( |
|||
policy1.retrieve_memories(list(decision_step.agent_id)) |
|||
).unsqueeze(0) |
|||
|
|||
with torch.no_grad(): |
|||
_, log_probs1, _, _, _ = policy1.sample_actions( |
|||
vec_obs, vis_obs, masks=masks, memories=memories, all_log_probs=True |
|||
) |
|||
_, log_probs2, _, _, _ = policy2.sample_actions( |
|||
vec_obs, vis_obs, masks=masks, memories=memories, all_log_probs=True |
|||
) |
|||
|
|||
np.testing.assert_array_equal(log_probs1, log_probs2) |
|||
|
|||
|
|||
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"]) |
|||
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"]) |
|||
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"]) |
|||
def test_checkpoint_conversion(tmpdir, rnn, visual, discrete): |
|||
dummy_config = TrainerSettings() |
|||
model_path = os.path.join(tmpdir, "Mock_Brain") |
|||
policy = create_policy_mock( |
|||
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual |
|||
) |
|||
trainer_params = TrainerSettings() |
|||
saver = TorchSaver(trainer_params, model_path) |
|||
saver.register(policy) |
|||
saver.save_checkpoint("Mock_Brain", 100) |
|||
assert os.path.isfile(model_path + "/Mock_Brain-100.onnx") |
撰写
预览
正在加载...
取消
保存
Reference in new issue