浏览代码

Cleared notebook output.

/develop-generalizationTraining-TrainerController
Marwan Mattar 7 年前
当前提交
20ce0286
共有 1 个文件被更改,包括 9 次插入88 次删除
  1. 97
      python/Basics.ipynb

97
python/Basics.ipynb


},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [

},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [

},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:unityagents:\n",
"'Ball3DAcademy' started successfully!\n",
"Unity Academy name: Ball3DAcademy\n",
" Number of Brains: 1\n",
" Number of External Brains : 1\n",
" Lesson number : 0\n",
" Reset Parameters :\n",
"\t\t\n",
"Unity brain name: Ball3DBrain\n",
" Number of Visual Observations (per agent): 0\n",
" Vector Observation space type: continuous\n",
" Vector Observation space size (per agent): 8\n",
" Number of stacked Vector Observation: 3\n",
" Vector Action space type: continuous\n",
" Vector Action space size (per agent): 2\n",
" Vector Action descriptions: , \n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Unity Academy name: Ball3DAcademy\n",
" Number of Brains: 1\n",
" Number of External Brains : 1\n",
" Lesson number : 0\n",
" Reset Parameters :\n",
"\t\t\n",
"Unity brain name: Ball3DBrain\n",
" Number of Visual Observations (per agent): 0\n",
" Vector Observation space type: continuous\n",
" Vector Observation space size (per agent): 8\n",
" Number of stacked Vector Observation: 3\n",
" Vector Action space type: continuous\n",
" Vector Action space size (per agent): 2\n",
" Vector Action descriptions: , \n"
]
}
],
"outputs": [],
"source": [
"env = UnityEnvironment(file_name=env_name)\n",
"\n",

},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Agent state looks like: \n",
"[ 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. -0.01467304 -0.01468306 -0.52082086 4.\n",
" -0.79952097 0. 0. 0. ]\n"
]
}
],
"outputs": [],
"source": [
"# Reset the environment\n",
"env_info = env.reset(train_mode=train_mode)[default_brain]\n",

},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total reward this episode: 0.700000025331974\n",
"Total reward this episode: 1.500000037252903\n",
"Total reward this episode: 0.6000000238418579\n",
"Total reward this episode: 1.0000000298023224\n",
"Total reward this episode: 0.40000002086162567\n",
"Total reward this episode: 0.5000000223517418\n",
"Total reward this episode: 0.700000025331974\n",
"Total reward this episode: 1.1000000312924385\n",
"Total reward this episode: 0.9000000283122063\n",
"Total reward this episode: 1.1000000312924385\n"
]
}
],
"outputs": [],
"source": [
"for episode in range(10):\n",
" env_info = env.reset(train_mode=train_mode)[default_brain]\n",

},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {

正在加载...
取消
保存