浏览代码

ready for cloud training

/develop/bisim-review
yanchaosun 5 年前
当前提交
1e52ad3d
共有 5 个文件被更改,包括 8 次插入3 次删除
  1. 1
      config/ppo_transfer/3DBall.yaml
  2. 2
      config/ppo_transfer/3DBallHard.yaml
  3. 3
      ml-agents/mlagents/trainers/learn.py
  4. 4
      ml-agents/mlagents/trainers/ppo_transfer/optimizer.py
  5. 1
      ml-agents/mlagents/trainers/settings.py

1
config/ppo_transfer/3DBall.yaml


time_horizon: 1000
summary_freq: 12000
threaded: true
transfer: true

2
config/ppo_transfer/3DBallHard.yaml


num_epoch: 3
learning_rate_schedule: linear
conv_thres: 1e-3
use_transfer: true
transfer_path: "results/single_ball/3DBall"
network_settings:
normalize: true
hidden_units: 128

3
ml-agents/mlagents/trainers/learn.py


if options.env_settings.seed == -1:
run_seed = np.random.randint(0, 10000)
run_training(run_seed, options)
os.system('mlagents-learn config/ppo/3DBallHard.yaml --run=test --env=envs/3dballhard --force')
if options.behaviors.transfer:
os.system('mlagents-learn config/ppo_transfer/3DBallHard.yaml --env=envs/3dballhard --num-envs=4 --force')
def main():

4
ml-agents/mlagents/trainers/ppo_transfer/optimizer.py


with tf.variable_scope("value"):
if policy.use_continuous_act:
self._create_cc_critic(h_size, num_layers, vis_encode_type)
self._create_cc_critic(h_size, hyperparameters.value_layers, vis_encode_type)
self._create_dc_critic(h_size, num_layers, vis_encode_type)
self._create_dc_critic(h_size, hyperparameters.value_layers, vis_encode_type)
with tf.variable_scope("optimizer/"):
self.learning_rate = ModelUtils.create_schedule(

1
ml-agents/mlagents/trainers/settings.py


# Network
encoder_layers: int = 1
policy_layers: int = 1
value_layers: int = 1
forward_layers: int = 1
inverse_layers: int = 1

正在加载...
取消
保存