浏览代码

cloud config: non-linear policy

/develop/bisim-sac-transfer
yanchaosun 4 年前
当前提交
120d1c3a
共有 3 个文件被更改,包括 139 次插入0 次删除
  1. 46
      config/sac_transfer/3DBallCloud.yaml
  2. 45
      config/sac_transfer/3DBallHardCloud.yaml
  3. 48
      config/sac_transfer/3DBallHardTransferCloud.yaml

46
config/sac_transfer/3DBallCloud.yaml


behaviors:
3DBall:
trainer_type: sac_transfer
hyperparameters:
learning_rate: 0.0003
learning_rate_schedule: linear
model_schedule: linear
batch_size: 64
buffer_size: 200000
buffer_init_steps: 0
tau: 0.005
steps_per_update: 10.0
save_replay_buffer: false
init_entcoef: 0.5
reward_signal_steps_per_update: 10.0
encoder_layers: 2
policy_layers: 1
forward_layers: 0
value_layers: 1
feature_size: 32
# separate_value_net: true
separate_policy_train: true
# separate_value_train: true
separate_model_train: true
reuse_encoder: true
in_epoch_alter: false
in_batch_alter: true
use_op_buffer: false
use_var_predict: true
with_prior: false
predict_return: true
use_bisim: false
network_settings:
normalize: true
hidden_units: 128
num_layers: 2
vis_encode_type: simple
reward_signals:
extrinsic:
gamma: 0.99
strength: 1.0
keep_checkpoints: 5
max_steps: 500000
time_horizon: 1000
summary_freq: 12000
threaded: true

45
config/sac_transfer/3DBallHardCloud.yaml


behaviors:
3DBallHard:
trainer_type: sac_transfer
hyperparameters:
learning_rate: 0.0003
learning_rate_schedule: linear
batch_size: 256
buffer_size: 500000
buffer_init_steps: 0
tau: 0.005
steps_per_update: 10.0
save_replay_buffer: false
init_entcoef: 1.0
reward_signal_steps_per_update: 10.0
encoder_layers: 2
policy_layers: 1
forward_layers: 0
value_layers: 1
feature_size: 32
# separate_value_net: true
separate_policy_train: true
# separate_value_train: true
separate_model_train: true
reuse_encoder: true
in_epoch_alter: false
in_batch_alter: true
use_op_buffer: false
use_var_predict: true
with_prior: false
predict_return: true
use_bisim: false
network_settings:
normalize: true
hidden_units: 128
num_layers: 2
vis_encode_type: simple
reward_signals:
extrinsic:
gamma: 0.99
strength: 1.0
keep_checkpoints: 5
max_steps: 500000
time_horizon: 1000
summary_freq: 12000
threaded: true

48
config/sac_transfer/3DBallHardTransferCloud.yaml


behaviors:
3DBallHard:
trainer_type: sac_transfer
hyperparameters:
learning_rate: 0.0003
learning_rate_schedule: linear
batch_size: 256
buffer_size: 500000
buffer_init_steps: 0
tau: 0.005
steps_per_update: 10.0
save_replay_buffer: false
init_entcoef: 1.0
reward_signal_steps_per_update: 10.0
encoder_layers: 2
policy_layers: 1
forward_layers: 0
value_layers: 1
feature_size: 32
# separate_value_net: true
separate_policy_train: true
# separate_value_train: true
reuse_encoder: true
in_epoch_alter: false
in_batch_alter: false
use_op_buffer: false
use_var_predict: true
with_prior: false
predict_return: true
use_bisim: false
use_transfer: true
load_model: true
train_model: false
transfer_path: "results/sac-ball-f32-p1f0/3DBall"
network_settings:
normalize: true
hidden_units: 128
num_layers: 2
vis_encode_type: simple
reward_signals:
extrinsic:
gamma: 0.99
strength: 1.0
keep_checkpoints: 5
max_steps: 500000
time_horizon: 1000
summary_freq: 12000
threaded: true
正在加载...
取消
保存