浏览代码

remove unused imports test_hybrid

/develop/actionmodel-csharp
Andrew Cohen 4 年前
当前提交
11e2f5e4
共有 1 个文件被更改,包括 6 次插入76 次删除
  1. 82
      ml-agents/mlagents/trainers/tests/torch/test_hybrid.py

82
ml-agents/mlagents/trainers/tests/torch/test_hybrid.py


from mlagents.trainers.tests.simple_test_envs import (
SimpleEnvironment,
MemoryEnvironment,
RecordEnvironment,
from mlagents.trainers.demo_loader import write_demo
from mlagents.trainers.settings import (
NetworkSettings,
SelfPlaySettings,
BehavioralCloningSettings,
GAILSettings,
RewardSignalType,
EncoderType,
FrameworkType,
)
from mlagents_envs.communicator_objects.demonstration_meta_pb2 import (
DemonstrationMetaProto,
)
from mlagents_envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
from mlagents_envs.communicator_objects.space_type_pb2 import discrete, continuous
from mlagents.trainers.settings import NetworkSettings, FrameworkType
from mlagents.trainers.tests.check_env_trains import (
check_environment_trains,
default_reward_processor,
)
from mlagents.trainers.tests.check_env_trains import check_environment_trains
BRAIN_NAME = "1D"

def test_hybrid_ppo():
env = SimpleEnvironment(
[BRAIN_NAME], continuous_action_size=1, discrete_action_size=1
)
config = attr.evolve(PPO_TORCH_CONFIG)
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=1.0)
def test_conthybrid_ppo():
env = SimpleEnvironment(
[BRAIN_NAME], continuous_action_size=1, discrete_action_size=0
)
config = attr.evolve(PPO_TORCH_CONFIG)
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=1.0)
def test_dischybrid_ppo():
env = SimpleEnvironment(
[BRAIN_NAME], continuous_action_size=0, discrete_action_size=1
)
env = SimpleEnvironment([BRAIN_NAME], action_sizes=(1, 1))
config = attr.evolve(PPO_TORCH_CONFIG)
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=1.0)

env = SimpleEnvironment(
[BRAIN_NAME],
num_visual=num_visual,
num_vector=0,
continuous_action_size=1,
discrete_action_size=1,
[BRAIN_NAME], num_visual=num_visual, num_vector=0, action_sizes=(1, 1)
)
new_hyperparams = attr.evolve(
PPO_TORCH_CONFIG.hyperparameters, learning_rate=3.0e-4

def test_recurrent_ppo():
env = MemoryEnvironment(
[BRAIN_NAME], continuous_action_size=1, discrete_action_size=1
)
env = MemoryEnvironment([BRAIN_NAME], action_sizes=(1, 1))
new_network_settings = attr.evolve(
PPO_TORCH_CONFIG.network_settings,
memory=NetworkSettings.MemorySettings(memory_size=16),

PPO_TORCH_CONFIG,
hyperparameters=new_hyperparams,
network_settings=new_network_settings,
max_steps=100000,
max_steps=10000,
# def test_3cdhybrid_ppo():
# env = SimpleEnvironment(
# [BRAIN_NAME], continuous_action_size=2, discrete_action_size=1, step_size=0.8
# )
# new_hyperparams = attr.evolve(
# PPO_TORCH_CONFIG.hyperparameters, batch_size=128, buffer_size=1280, beta=0.01
# )
# config = attr.evolve(
# PPO_TORCH_CONFIG, hyperparameters=new_hyperparams, max_steps=10000
# )
# check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=1.0)
#
#
# def test_3ddhybrid_ppo():
# env = SimpleEnvironment(
# [BRAIN_NAME], continuous_action_size=1, discrete_action_size=2, step_size=0.8
# )
# new_hyperparams = attr.evolve(
# PPO_TORCH_CONFIG.hyperparameters, batch_size=128, buffer_size=1280, beta=0.01
# )
# config = attr.evolve(
# PPO_TORCH_CONFIG, hyperparameters=new_hyperparams, max_steps=10000
# )
# check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=1.0)
正在加载...
取消
保存