浏览代码

fixed export so both teams have current model

/develop/cubewars
Andrew Cohen 5 年前
当前提交
052a24a0
共有 1 个文件被更改,包括 9 次插入2 次删除
  1. 11
      ml-agents/mlagents/trainers/ghost/trainer.py

11
ml-agents/mlagents/trainers/ghost/trainer.py


# will push the current_snapshot into the correct queue. Otherwise,
# it will continue skipping and swap_snapshot will continue to handle
# pushing fixed snapshots
# Case 3: No team change. The if statement just continues to push the policy
# into the correct queue (or not if not learning team).
next_learning_team = self.controller.get_learning_team(self.get_step)
for brain_name in self._internal_policy_queues:
internal_policy_queue = self._internal_policy_queues[brain_name]

def export_model(self, name_behavior_id: str) -> None:
"""
Forwarding call to wrapped trainers export_model
Forwarding call to wrapped trainers export_model.
First loads the current snapshot.
self.trainer.export_model(name_behavior_id)
parsed_behavior_id = self._name_to_parsed_behavior_id[name_behavior_id]
brain_name = parsed_behavior_id.brain_name
policy = self.trainer.get_policy(brain_name)
policy.load_weights(self.current_policy_snapshot[brain_name])
self.trainer.export_model(brain_name)
def create_policy(self, brain_parameters: BrainParameters) -> TFPolicy:
"""

正在加载...
取消
保存