GitHub
4 年前
当前提交
03eac72c
共有 2 个文件被更改,包括 178 次插入 和 18 次删除
-
46ml-agents/mlagents/trainers/policy/torch_policy.py
-
150ml-agents/mlagents/trainers/tests/torch/test_policy.py
|
|||
import pytest |
|||
|
|||
import torch |
|||
from mlagents.trainers.policy.torch_policy import TorchPolicy |
|||
from mlagents.trainers.tests import mock_brain as mb |
|||
from mlagents.trainers.settings import TrainerSettings, NetworkSettings |
|||
from mlagents.trainers.torch.utils import ModelUtils |
|||
|
|||
VECTOR_ACTION_SPACE = 2 |
|||
VECTOR_OBS_SPACE = 8 |
|||
DISCRETE_ACTION_SPACE = [3, 3, 3, 2] |
|||
BUFFER_INIT_SAMPLES = 32 |
|||
NUM_AGENTS = 12 |
|||
EPSILON = 1e-7 |
|||
|
|||
|
|||
def create_policy_mock( |
|||
dummy_config: TrainerSettings, |
|||
use_rnn: bool = False, |
|||
use_discrete: bool = True, |
|||
use_visual: bool = False, |
|||
seed: int = 0, |
|||
) -> TorchPolicy: |
|||
mock_spec = mb.setup_test_behavior_specs( |
|||
use_discrete, |
|||
use_visual, |
|||
vector_action_space=DISCRETE_ACTION_SPACE |
|||
if use_discrete |
|||
else VECTOR_ACTION_SPACE, |
|||
vector_obs_space=VECTOR_OBS_SPACE, |
|||
) |
|||
|
|||
trainer_settings = dummy_config |
|||
trainer_settings.keep_checkpoints = 3 |
|||
trainer_settings.network_settings.memory = ( |
|||
NetworkSettings.MemorySettings() if use_rnn else None |
|||
) |
|||
policy = TorchPolicy(seed, mock_spec, trainer_settings) |
|||
return policy |
|||
|
|||
|
|||
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"]) |
|||
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"]) |
|||
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"]) |
|||
def test_policy_evaluate(rnn, visual, discrete): |
|||
# Test evaluate |
|||
policy = create_policy_mock( |
|||
TrainerSettings(), use_rnn=rnn, use_discrete=discrete, use_visual=visual |
|||
) |
|||
decision_step, terminal_step = mb.create_steps_from_behavior_spec( |
|||
policy.behavior_spec, num_agents=NUM_AGENTS |
|||
) |
|||
|
|||
run_out = policy.evaluate(decision_step, list(decision_step.agent_id)) |
|||
if discrete: |
|||
run_out["action"].shape == (NUM_AGENTS, len(DISCRETE_ACTION_SPACE)) |
|||
else: |
|||
assert run_out["action"].shape == (NUM_AGENTS, VECTOR_ACTION_SPACE) |
|||
|
|||
|
|||
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"]) |
|||
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"]) |
|||
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"]) |
|||
def test_evaluate_actions(rnn, visual, discrete): |
|||
policy = create_policy_mock( |
|||
TrainerSettings(), use_rnn=rnn, use_discrete=discrete, use_visual=visual |
|||
) |
|||
buffer = mb.simulate_rollout(64, policy.behavior_spec, memory_size=policy.m_size) |
|||
vec_obs = [ModelUtils.list_to_tensor(buffer["vector_obs"])] |
|||
act_masks = ModelUtils.list_to_tensor(buffer["action_mask"]) |
|||
if policy.use_continuous_act: |
|||
actions = ModelUtils.list_to_tensor(buffer["actions"]).unsqueeze(-1) |
|||
else: |
|||
actions = ModelUtils.list_to_tensor(buffer["actions"], dtype=torch.long) |
|||
vis_obs = [] |
|||
for idx, _ in enumerate(policy.actor_critic.network_body.visual_encoders): |
|||
vis_ob = ModelUtils.list_to_tensor(buffer["visual_obs%d" % idx]) |
|||
vis_obs.append(vis_ob) |
|||
|
|||
memories = [ |
|||
ModelUtils.list_to_tensor(buffer["memory"][i]) |
|||
for i in range(0, len(buffer["memory"]), policy.sequence_length) |
|||
] |
|||
if len(memories) > 0: |
|||
memories = torch.stack(memories).unsqueeze(0) |
|||
|
|||
log_probs, entropy, values = policy.evaluate_actions( |
|||
vec_obs, |
|||
vis_obs, |
|||
masks=act_masks, |
|||
actions=actions, |
|||
memories=memories, |
|||
seq_len=policy.sequence_length, |
|||
) |
|||
assert log_probs.shape == (64, policy.behavior_spec.action_size) |
|||
assert entropy.shape == (64, policy.behavior_spec.action_size) |
|||
for val in values.values(): |
|||
assert val.shape == (64,) |
|||
|
|||
|
|||
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"]) |
|||
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"]) |
|||
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"]) |
|||
def test_sample_actions(rnn, visual, discrete): |
|||
policy = create_policy_mock( |
|||
TrainerSettings(), use_rnn=rnn, use_discrete=discrete, use_visual=visual |
|||
) |
|||
buffer = mb.simulate_rollout(64, policy.behavior_spec, memory_size=policy.m_size) |
|||
vec_obs = [ModelUtils.list_to_tensor(buffer["vector_obs"])] |
|||
act_masks = ModelUtils.list_to_tensor(buffer["action_mask"]) |
|||
|
|||
vis_obs = [] |
|||
for idx, _ in enumerate(policy.actor_critic.network_body.visual_encoders): |
|||
vis_ob = ModelUtils.list_to_tensor(buffer["visual_obs%d" % idx]) |
|||
vis_obs.append(vis_ob) |
|||
|
|||
memories = [ |
|||
ModelUtils.list_to_tensor(buffer["memory"][i]) |
|||
for i in range(0, len(buffer["memory"]), policy.sequence_length) |
|||
] |
|||
if len(memories) > 0: |
|||
memories = torch.stack(memories).unsqueeze(0) |
|||
|
|||
( |
|||
sampled_actions, |
|||
log_probs, |
|||
entropies, |
|||
sampled_values, |
|||
memories, |
|||
) = policy.sample_actions( |
|||
vec_obs, |
|||
vis_obs, |
|||
masks=act_masks, |
|||
memories=memories, |
|||
seq_len=policy.sequence_length, |
|||
all_log_probs=not policy.use_continuous_act, |
|||
) |
|||
if discrete: |
|||
assert log_probs.shape == ( |
|||
64, |
|||
sum(policy.behavior_spec.discrete_action_branches), |
|||
) |
|||
else: |
|||
assert log_probs.shape == (64, policy.behavior_spec.action_shape) |
|||
assert entropies.shape == (64, policy.behavior_spec.action_size) |
|||
for val in sampled_values.values(): |
|||
assert val.shape == (64,) |
|||
|
|||
if rnn: |
|||
assert memories.shape == (1, 1, policy.m_size) |
撰写
预览
正在加载...
取消
保存
Reference in new issue