浏览代码

Server Side Folder Selector for visualizer

/pyrception-integration
leopoldo-zugasti 4 年前
当前提交
63d6b76a
共有 21 个文件被更改,包括 534 次插入383 次删除
  1. 35
      com.unity.perception/Editor/Pyrception/PyrceptionInstaller.cs
  2. 488
      com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/preview.py
  3. 41
      com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/pyrception.py
  4. 1
      com.unity.perception/Editor/Pyrception/pyrception-utils/requirements.txt
  5. 10
      com.unity.perception/Editor/Pyrception/pyrception-utils/setup.py
  6. 8
      com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/helpers.meta
  7. 8
      com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/visualization.meta
  8. 80
      com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/helpers/custom_components_setup.py
  9. 7
      com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/helpers/custom_components_setup.py.meta
  10. 15
      com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/helpers/folder_explorer.py
  11. 7
      com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/helpers/folder_explorer.py.meta
  12. 7
      com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/visualization/bbox.py.meta
  13. 7
      com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/visualization/bbox3d_plot.py.meta
  14. 182
      com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/visualization/visualizers.py
  15. 7
      com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/visualization/visualizers.py.meta
  16. 7
      com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/bbox.py.meta
  17. 7
      com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/bbox3d_plot.py.meta
  18. 0
      /com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/visualization/bbox.py
  19. 0
      /com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/visualization/bbox3d_plot.py

35
com.unity.perception/Editor/Pyrception/PyrceptionInstaller.cs


//This files stores entries as ProjectDataPath,PythonPID,Port,PyrceptionPID
//It keeps a record of the instances of pyrception opened so that we don't open a new one everytime
private static readonly string _filename_streamlit_instances = "Unity/cache/streamlit_instances.csv";
private static readonly string _filename_streamlit_instances = "Unity/streamlit_instances.csv";
private static string pathToStreamlitInstances
{
get

#endif
ProcessStartInfo info = new ProcessStartInfo(shell, argument);
info.CreateNoWindow = true;
info.CreateNoWindow = !displayWindow;
info.UseShellExecute = false;
info.RedirectStandardOutput = false;
info.RedirectStandardError = waitForExit;

}
Process[] after = null;
int maxAttempts = 5;
int attempts = 0;
if(attempts == maxAttempts)
{
UnityEngine.Debug.LogError("Failed to get pyrception ID");
return;
}
attempts++;
attempts = 0;
if(attempts == maxAttempts)
{
UnityEngine.Debug.LogError("Failed to get python ID");
return;
}
attempts++;
attempts = 0;
if(attempts == maxAttempts)
{
UnityEngine.Debug.LogError("Failed to get PORT");
return;
}
attempts++;
}
//Save this into the streamlit_instances.csv file

//For convinience if the user wants to force a new one to open they can press on "manually open"
if (EditorUtility.DisplayDialog("Opening Visualizer Tool",
/*if (EditorUtility.DisplayDialog("Opening Visualizer Tool",
}
}*/
LaunchBrowser(newPort);
}
}

#elif UNITY_EDITOR_OSX
command = $"cd \'{packagesPath}\' ;./python3.7 ./pyrception-utils.py preview --data=\'{pathToData}/..\'";
#endif
int PID = ExecuteCMD(command, ref ExitCode, waitForExit: false, displayWindow: true);
int PID = ExecuteCMD(command, ref ExitCode, waitForExit: false, displayWindow: false);
if (ExitCode != 0)
{
UnityEngine.Debug.LogError("Problem occured when launching pyrception-utils - Exit Code: " + ExitCode);

488
com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/preview.py


import argparse
import json
import os
import pathlib
from typing import Dict, List, Tuple
import sys
import time
import subprocess
from pathlib import Path
from typing import List, Tuple
import PIL
from PIL import ImageFont
from PIL.Image import Image
from PIL.ImageDraw import ImageDraw
from pyrception_utils import PyrceptionDataset
from pyquaternion import Quaternion
from bbox import BBox3D
from bbox3d_plot import add_single_bbox3d_on_image
st.set_page_config(layout="wide")
# --------------------------------Custom component-----------------------------------------------------------------------
import streamlit.components.v1 as components
root_dir = os.path.dirname(os.path.abspath(__file__))
build_dir_slider = os.path.join(root_dir, "custom_components/slider/build")
build_dir_page_selector = os.path.join(root_dir, "custom_components/pageselector/build")
build_dir_go_to = os.path.join(root_dir, "custom_components/goto/build")
build_dir_item_selector = os.path.join(root_dir, "custom_components/itemselector/build")
build_dir_image_selector = os.path.join(root_dir, "custom_components/imageselector/build")
build_dir_json_viewer = os.path.join(root_dir, "custom_components/jsonviewer/build")
build_dir_item_selector_zoom = os.path.join(root_dir, "custom_components/itemselectorzoom/build")
_discrete_slider = components.declare_component(
"discrete_slider",
path=build_dir_slider
)
_page_selector = components.declare_component(
"page_selector",
path=build_dir_page_selector
)
_go_to = components.declare_component(
"go_to",
path=build_dir_go_to
)
_item_selector = components.declare_component(
"item_selector",
path=build_dir_item_selector
)
_image_selector = components.declare_component(
"image_selector",
path=build_dir_image_selector
)
_json_viewer = components.declare_component(
"json_viewer",
path=build_dir_json_viewer
)
_item_selector_zoom = components.declare_component(
"item_selector_zoom",
path=build_dir_item_selector_zoom
)
import visualization.visualizers as v
def discrete_slider(greeting, name, key, default=0):
return _discrete_slider(greeting=greeting, name=name, default=default, key=key)
# import datasetinsights
from pyrception_utils import PyrceptionDataset
def page_selector(startAt, incrementAmt, key=0):
return _page_selector(startAt=startAt, incrementAmt=incrementAmt, key=key, default=0)
st.set_page_config(layout="wide") #This needs to be the first streamlit command
import helpers.custom_components_setup as cc
def go_to(key=0):
return _go_to(key=key, default=0)
def item_selector(startAt, incrementAmt, datasetSize, key=0):
return _item_selector(startAt=startAt, incrementAmt=incrementAmt, datasetSize=datasetSize, key=key, default=startAt)
def image_selector(index, key=0):
return _image_selector(index=index, key=key, default=index)
def json_viewer(metadata, key=0):
return _json_viewer(jsonMetadata=metadata, key=key, default=0)
def item_selector_zoom(index, datasetSize, key=0):
return _item_selector_zoom(index=index, datasetSize=datasetSize, key=key, default=index)
# -------------------------------------END-------------------------------------------------------------------------------
:return: A list of dataset directories.
:return: list of dataset directories
datasets.append(item)
date = os.path.getctime(os.path.join(path, item))
datasets.append((date, item))
datasets.sort(reverse=True)
for idx, (date, item) in enumerate(datasets):
datasets[idx] = (time.ctime(date)[4:], item)
def frame_selector_ui(dataset: PyrceptionDataset) -> int:
"""
Frame selector streamlist widget to select which frame in the dataset to display
:param dataset: the PyrceptionDataset
:type PyrceptionDataset:
:return: The image index
:rtype: int
"""
st.sidebar.markdown("# Image set")
num_images = len(dataset)
image_index = st.sidebar.slider("Image number", 0, num_images - 1)
return image_index
def draw_image_with_boxes(
image: Image,
classes: Dict,
labels: List,
boxes: List[List],
colors: Dict,
header: str,
description: str,
):
"""
Draws an image in streamlit with labels and bounding boxes.
:param image: the PIL image
:type PIL:
:param classes: the class dictionary
:type Dict:
:param labels: list of integer object labels for the frame
:type List:
:param boxes: List of bounding boxes (as a List of coordinates) for the frame
:type List[List]:
:param colors: class colors
:type Dict:
:param header: Image header
:type str:
:param description: Image description
:type str:
"""
image = image.copy()
image_draw = ImageDraw(image)
# draw bounding boxes
path_to_font = pathlib.Path(__file__).parent.absolute()
font = ImageFont.truetype(f"{path_to_font}/NairiNormal-m509.ttf", 15)
for label, box in zip(labels, boxes):
label = label - 1
class_name = classes[label]
image_draw.rectangle(box, outline=colors[class_name], width=2)
image_draw.text(
(box[0], box[1]), class_name, font=font, fill=colors[class_name]
)
# st.subheader(header)
# st.markdown(description)
# st.image(image, use_column_width=True)
return image
def draw_image_with_segmentation(
image: Image,
height: int,
width: int,
segmentation: Image,
header: str,
description: str,
):
"""
Draws an image in streamlit with labels and bounding boxes.
:param image: the PIL image
:type PIL:
:param height: height of the image
:type int:
:param width: width of the image
:type int:
:param segmentation: Segmentation Image
:type PIL:
:param header: Image header
:type str:
:param description: Image description
:type str:
"""
# image_draw = ImageDraw(segmentation)
rgba = np.array(segmentation.copy().convert("RGBA"))
r, g, b, a = rgba.T
black_areas = (r == 0) & (b == 0) & (g == 0) & (a == 255)
other_areas = (r != 0) | (b != 0) | (g != 0)
rgba[..., 0:4][black_areas.T] = (0, 0, 0, 0)
rgba[..., -1][other_areas.T] = int(0.6 * 255)
foreground = PIL.Image.fromarray(rgba)
image = image.copy()
image.paste(foreground, (0, 0), foreground)
return image
def draw_image_with_keypoints(
image: Image,
keypoints,
dataset,
):
image = image.copy()
image_draw = ImageDraw(image)
radius = int(dataset.metadata.image_size[0] * 5/500)
for i in range(len(keypoints)):
keypoint = keypoints[i]
if keypoint["state"] != 2:
continue
coordinates = (keypoint["x"]-radius, keypoint["y"]-radius, keypoint["x"]+radius, keypoint["y"]+radius)
color = dataset.metadata.annotations[dataset.metadata.available_annotations['keypoints']]["spec"][0]["key_points"][i]["color"]
image_draw.ellipse(coordinates, fill=(int(255*color["r"]), int(255*color["g"]), int(255*color["b"]), 255))
skeleton = dataset.metadata.annotations[dataset.metadata.available_annotations['keypoints']]["spec"][0]["skeleton"]
for bone in skeleton:
if keypoints[bone["joint1"]]["state"] != 2 or keypoints[bone["joint1"]]["state"] != 2:
continue
joint1 = (keypoints[bone["joint1"]]["x"], keypoints[bone["joint1"]]["y"])
joint2 = (keypoints[bone["joint2"]]["x"], keypoints[bone["joint2"]]["y"])
r = bone["color"]["r"]
g = bone["color"]["g"]
b = bone["color"]["b"]
image_draw.line([joint1, joint2], fill=(int(255*r), int(255*g), int(255*b), 255), width=int(dataset.metadata.image_size[0] * 3/500))
return image
def plot_bboxes3d(image, bboxes, projection, color, orthographic):
""" Plot an image with 3D bounding boxes
Currently this method should only be used for ground truth images, and
doesn't support predictions. If a list of colors is not provided as an
argument to this routine, the default color of green will be used.
Args:
image (PIL Image): a PIL image.
bboxes (list): a list of BBox3D objects
projection: The perspective projection of the camera which
captured the ground truth.
colors (list): a color list for boxes. Defaults to none. If
colors = None, it will default to coloring all boxes green.
Returns:
PIL image: a PIL image with bounding boxes drawn on it.
"""
np_image = np.array(image)
img_height, img_width, _ = np_image.shape
for i, box in enumerate(bboxes):
add_single_bbox3d_on_image(np_image, box, projection, color, orthographic=orthographic)
return PIL.Image.fromarray(np_image)
def read_bounding_box_3d(bounding_boxes_metadata):
bboxes = []
for b in bounding_boxes_metadata:
label_id = b['label_id']
translation = (b["translation"]["x"],b["translation"]["y"],b["translation"]["z"])
size = (b["size"]["x"], b["size"]["y"], b["size"]["z"])
rotation = b["rotation"]
rotation = Quaternion(
x=rotation["x"], y=rotation["y"], z=rotation["z"], w=rotation["w"]
)
#if label_mappings and label_id not in label_mappings:
# continue
box = BBox3D(
translation=translation,
size=size,
label=label_id,
sample_token=0,
score=1,
rotation=rotation,
)
bboxes.append(box)
return bboxes
def draw_image_with_box_3d(image, sensor, values, colors):
if 'camera_intrinsic' in sensor:
projection = np.array(sensor["camera_intrinsic"])
else:
projection = np.array([[1,0,0],[0,1,0],[0,0,1]])
boxes = read_bounding_box_3d(values)
img_with_boxes = plot_bboxes3d(image, boxes, projection, None, orthographic=(sensor["projection"] == "orthographic"))
return img_with_boxes
@st.cache(show_spinner=True, allow_output_mutation=True)
def load_perception_dataset(path: str) -> Tuple:
"""

:return: A tuple with the colors and PyrceptionDataset object as (colors, dataset)
:rtype: Tuple
"""
# --------------------------------CHANGE TO DATASETINSIGHTS LOADING---------------------------------------------
dataset = PyrceptionDataset(data_dir=path)
classes = dataset.classes
colors = {name: tuple(np.random.randint(128, 255, size=3)) for name in classes}

:param base_dataset_dir: The directory that contains the perceptions datasets.
:type str:
"""
# st.markdown("# Synthetic Dataset Preview\n ## Unity Technologies ")
dataset_name = st.sidebar.selectbox(
"Please select a dataset...", list_datasets(base_dataset_dir)
)
if dataset_name is not None:
colors, dataset = load_perception_dataset(
os.path.join(base_dataset_dir, dataset_name)
session_state = SessionState.get(image='-1', start_at='0', num_cols='3', current_page='main', curr_dir=base_dataset_dir)
base_dataset_dir = session_state.curr_dir
st.sidebar.markdown("# Select Project")
if st.sidebar.button("Change dataset folder"):
folder_select(session_state)
if session_state.current_page == 'main':
st.sidebar.markdown("# Dataset Selection")
datasets = list_datasets(base_dataset_dir)
datasets_names = [ctime + " " + item for ctime, item in datasets]
dataset_name = st.sidebar.selectbox(
"Please select a dataset...", datasets_names
for ctime, item in datasets:
if dataset_name.startswith(ctime):
dataset_name = item
break
available_labelers = [a["name"] for a in dataset.metadata.annotations]
labelers = {}
if 'bounding box' in available_labelers:
labelers['bounding box'] = st.sidebar.checkbox("Bounding Boxes 2D", key="bb2d")
if 'bounding box 3D' in available_labelers:
labelers['bounding box 3D'] = st.sidebar.checkbox("Bounding Boxes 3D", key="bb2d")
if 'keypoints' in available_labelers:
labelers['keypoints'] = st.sidebar.checkbox("Key Points", key="kp")
if 'instance segmentation' in available_labelers and 'semantic segmentation' in available_labelers:
if st.sidebar.checkbox('Segmentation'):
selected_segmentation = st.sidebar.radio("Select the segmentation type:", ['Semantic Segmentation', 'Instance Segmentation'], index=0)
if selected_segmentation == 'Semantic Segmentation':
labelers['semantic segmentation'] = True
elif selected_segmentation == 'Instance Segmentation':
labelers['instance segmentation'] = True
elif 'semantic segmentation' in available_labelers:
labelers['semantic segmentation'] = st.sidebar.checkbox("Semantic Segmentation", key="ss")
elif 'instance segmentation' in available_labelers:
labelers['instance segmentation'] = st.sidebar.checkbox("Instance Segmentation", key="is")
if dataset_name is not None:
colors, dataset = load_perception_dataset(
os.path.join(base_dataset_dir, dataset_name)
)
session_state = SessionState.get(image='-1', start_at='0', num_cols='3')
index = int(session_state.image)
if index >= 0:
dataset_path = os.path.join(base_dataset_dir, dataset_name)
zoom(index, colors, dataset, session_state, labelers, dataset_path)
else:
num_rows = 5
grid_view(num_rows, colors, dataset, session_state, labelers)
st.sidebar.markdown("# Labeler Visualization")
# change this to load from dataset insights the names of the available labelers
available_labelers = [a["name"] for a in dataset.metadata.annotations]
labelers = {}
if 'bounding box' in available_labelers:
labelers['bounding box'] = st.sidebar.checkbox("Bounding Boxes 2D", key="bb2d")
if 'bounding box 3D' in available_labelers:
labelers['bounding box 3D'] = st.sidebar.checkbox("Bounding Boxes 3D", key="bb2d")
if 'keypoints' in available_labelers:
labelers['keypoints'] = st.sidebar.checkbox("Key Points", key="kp")
if 'instance segmentation' in available_labelers and 'semantic segmentation' in available_labelers:
if st.sidebar.checkbox('Segmentation'):
selected_segmentation = st.sidebar.radio("Select the segmentation type:", ['Semantic Segmentation', 'Instance Segmentation'], index=0)
if selected_segmentation == 'Semantic Segmentation':
labelers['semantic segmentation'] = True
elif selected_segmentation == 'Instance Segmentation':
labelers['instance segmentation'] = True
elif 'semantic segmentation' in available_labelers:
labelers['semantic segmentation'] = st.sidebar.checkbox("Semantic Segmentation", key="ss")
elif 'instance segmentation' in available_labelers:
labelers['instance segmentation'] = st.sidebar.checkbox("Instance Segmentation", key="is")
st.sidebar.markdown("# Filter")
st.sidebar.write("Coming soon")
st.sidebar.markdown("# Highlight")
st.sidebar.write("Coming soon")
index = int(session_state.image)
if index >= 0:
dataset_path = os.path.join(base_dataset_dir, dataset_name)
zoom(index, colors, dataset, session_state, labelers, dataset_path)
else:
num_rows = 5
grid_view(num_rows, colors, dataset, session_state, labelers)
classes = dataset.classes
image = draw_image_with_segmentation(
image, dataset.metadata.image_size[0], dataset.metadata.image_size[1], semantic,
"Semantic Segmentation Preview", ""
image = v.draw_image_with_segmentation(
image, semantic
image = draw_image_with_segmentation(
image, dataset.metadata.image_size[0], dataset.metadata.image_size[1], instance,
"Semantic Segmentation Preview", ""
image = v.draw_image_with_segmentation(
image, instance
)
if 'bounding box' in labelers_to_use and labelers_to_use['bounding box']:

image = draw_image_with_boxes(
image, classes, labels, boxes, colors, "Bounding Boxes Preview", ""
classes = dataset.classes
image = v.draw_image_with_boxes(
image, classes, labels, boxes, colors
image = draw_image_with_keypoints(
image = v.draw_image_with_keypoints(
image = draw_image_with_box_3d(image, sensor, values, colors)
image = v.draw_image_with_box_3d(image, sensor, values, colors)
def folder_select(session_state):
'''if st.sidebar.button("< Back to main page"):
session_state.current_page = 'main'
st.experimental_rerun()
else:
curr_dir = session_state.curr_dir
print(curr_dir)
curr_dir = str(Path(curr_dir).absolute()).replace("\\", "/") + "/"
placeholder = st.empty()
prev = curr_dir
curr_dir = placeholder.text_input("Path to data", curr_dir)
if curr_dir != prev:
curr_dir = str(Path(curr_dir).absolute()).replace("\\", "/") + "/"
session_state.curr_dir = curr_dir
st.experimental_rerun()
if st.button("< parent folder"):
curr_dir = str(Path(curr_dir).parent.absolute()).replace("\\", "/") + "/"
session_state.curr_dir = curr_dir
st.experimental_rerun()
st.write("Contents of " + curr_dir)
folder_cols = st.beta_columns(3)
folders = [d for d in os.listdir(curr_dir) if os.path.isdir(curr_dir + d)]
for i, folder in enumerate(folders):
if folder_cols[i % 3].button(folder):
session_state.curr_dir = str(Path(curr_dir + folder).absolute()).replace("\\", "/") + "/"
st.experimental_rerun()
'''
# session_state.curr_dir = str(Path(fileName).absolute()).replace("\\", "/") + "/"
# fileName = dialog.getExistingDirectory(
# self,
# "Select Directory",
# "",
# QFileDialog.ShowDirsOnly | QFileDialog.DontResolveSymlinks
# )
#app.quit()
#del app
output = subprocess.run([sys.executable, os.path.join(os.path.dirname(os.path.realpath(__file__)), "helpers/folder_explorer.py")], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
session_state.curr_dir = str(os.path.abspath(str(output.stdout).split("\'")[1])[:-4]).replace("\\", "/") + "/"
st.experimental_rerun()
def grid_view(num_rows, colors, dataset, session_state, labelers):
header = st.beta_columns([2 / 3, 1 / 3])

st.experimental_rerun()
with header[0]:
start_at = item_selector(int(session_state.start_at), num_cols * num_rows, len(dataset))
start_at = cc.item_selector(int(session_state.start_at), num_cols * num_rows, len(dataset))
session_state.start_at = start_at
cols = st.beta_columns(num_cols)

st.experimental_rerun()
with header[1]:
new_index = item_selector_zoom(index, len(dataset))
new_index = cc.item_selector_zoom(index, len(dataset))
if not new_index == index:
session_state.image = new_index
st.experimental_rerun()

captures_dir = None
for directory in os.walk(dataset_path):
if "Dataset" in directory[0] and "." not in directory[0][1:]:
name = str(directory[0]).replace('\\', '/').split('/')[-1]
if name.startswith("Dataset") and "." not in name[1:]:
captures_dir = directory[0]
break

path_to_captures = os.path.join(os.path.abspath(captures_dir), "captures_" + postfix + ".json")
with layout[1]:
json_file = json.load(open(path_to_captures, "r"))
json_viewer(json.dumps(json_file["captures"][index]))
cc.json_viewer(json.dumps(json_file["captures"][index]))
def preview_app(args):

:param args: Arguments for the app, such as dataset
:type args: Namespace
"""
dataset_dir = args.data
if dataset_dir is not None:
st.sidebar.title("Pyrception Dataset Preview")
preview_dataset(dataset_dir)
if args.data is not None:
preview_dataset(args.data)
raise ValueError("Please specify the path to the main dataset directory!")
ValueError("Please use a valid path")
st.write(os.getcwd())
# remove the default zoom in button for images
# st.markdown('<script type="application/javascript"> function resizeIFrameToFitContent( iFrameme ) { iFrame.width = '
# 'iFrame.contentWindow.document.body.scrollWidth;iFrame.height = '
# 'iFrame.contentWindow.document.body.scrollHeight;} window.addEventListener(\'DOMContentLoaded\', '
# 'function(e) { var iFrame = document.getElementById( \'iFrame1\' ); resizeIFrameToFitContent( iFrame '
# '); var iframes = document.querySelectorAll("iframe"); for( var i = 0; i < iframes.length; i++) { '
# 'resizeIFrameToFitContent( iframes[i] );} } ); </script>', unsafe_allow_html=True)

41
com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/pyrception.py


"You must specify either PyrceptionDatasetMetadata or a data directory"
)
self.last_file_index = None
self.ann_to_index = None
def __getitem__(self, index: int) -> dict:
"""

).convert("RGB")
image_and_labelers["image"] = image
# Assumes that the order is the same for the annotations in metadata as in the captures_***.json file
annotations = {}
for i in range(len(self.metadata.annotations)):
a = self.metadata.annotations[i]
for j in range(len(self.data[sub_index]["annotations"])):
if self.data[sub_index]["annotations"][j]["annotation_definition"] == a["id"]:
annotations[a["name"]] = j
break
self.metadata.available_annotations = annotations
if self.ann_to_index is None:
# Assumes that the order is the same for the annotations in metadata as in the captures_***.json file
self.ann_to_index = {}
for i in range(len(self.metadata.annotations)):
a = self.metadata.annotations[i]
for j in range(len(self.data[sub_index]["annotations"])):
if class="bp">self.data[sub_index]["annotations"][j]["annotation_definition"] == a["id"]:
self.ann_to_index[a["name"]] = j
break
self.ann_to_index = self.ann_to_index
if "bounding box" in annotations:
image_and_labelers["bounding box"] = self.get_bounding_boxes(sub_index, annotations["bounding box"])
if "bounding box" in self.ann_to_index:
image_and_labelers["bounding box"] = self.get_bounding_boxes(sub_index, self.ann_to_index["bounding box"])
if "bounding box 3D" in annotations:
image_and_labelers["bounding box 3D"] = self.get_bounding_box_3d(sub_index, annotations["bounding box 3D"])
if "bounding box 3D" in self.ann_to_index:
image_and_labelers["bounding box 3D"] = self.get_bounding_box_3d(sub_index, self.ann_to_index["bounding box 3D"])
if "semantic segmentation" in annotations:
image_and_labelers["semantic segmentation"] = self.get_segmentation(sub_index, annotations[
if "semantic segmentation" in self.ann_to_index:
image_and_labelers["semantic segmentation"] = self.get_segmentation(sub_index, self.ann_to_index[
if "instance segmentation" in annotations:
image_and_labelers["instance segmentation"] = self.get_segmentation(sub_index, annotations[
if "instance segmentation" in self.ann_to_index:
image_and_labelers["instance segmentation"] = self.get_segmentation(sub_index, self.ann_to_index[
if "keypoints" in annotations:
image_and_labelers["keypoints"] = self.get_keypoints(sub_index, annotations["keypoints"])
if "keypoints" in self.ann_to_index:
image_and_labelers["keypoints"] = self.get_keypoints(sub_index, self.ann_to_index["keypoints"])
except IndexError:
print(self.data)

1
com.unity.perception/Editor/Pyrception/pyrception-utils/requirements.txt


coverage==5.5
opencv-python>=4.5
pyquaternion>=0.9.9
datasetinsights==1.0

10
com.unity.perception/Editor/Pyrception/pyrception-utils/setup.py


# TODO: add versions for packages
setup(
name="pyrception-utils",
version="0.1.1",
description="Pyrception-Utils: A toolkit for managing Unity Perception SDK datasets.",
name="unity-dataset-visualizer",
version="0.1",
description="Visualizer for unity perception package for synthetic datasets",
author="Unity Technologies",
packages=find_packages(),
python_requires=">=3.7",

"google-cloud-storage==1.19.0",
"opencv-python>=4.5"
"datasetinsights==1.0",
"PySide2==5.15.2",
],
entry_points={"console_scripts": ["pyrception-utils=pyrception_utils.cli:main"]},
)

8
com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/helpers.meta


fileFormatVersion: 2
guid: c373ebf36c0b4f64b812705b363aae82
folderAsset: yes
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

8
com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/visualization.meta


fileFormatVersion: 2
guid: 21399ad9c9d3a6a499631af612114e7d
folderAsset: yes
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

80
com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/helpers/custom_components_setup.py


import os
# --------------------------------Custom component-----------------------------------------------------------------------
import streamlit.components.v1 as components
custom_components_dir = "../custom_components/"
root_dir = os.path.dirname(os.path.abspath(__file__))
build_dir_slider = os.path.join(root_dir, custom_components_dir+"slider/build")
build_dir_page_selector = os.path.join(root_dir, custom_components_dir+"pageselector/build")
build_dir_go_to = os.path.join(root_dir, custom_components_dir+"goto/build")
build_dir_item_selector = os.path.join(root_dir, custom_components_dir+"itemselector/build")
build_dir_image_selector = os.path.join(root_dir, custom_components_dir+"imageselector/build")
build_dir_json_viewer = os.path.join(root_dir, custom_components_dir+"jsonviewer/build")
build_dir_item_selector_zoom = os.path.join(root_dir, custom_components_dir+"itemselectorzoom/build")
_discrete_slider = components.declare_component(
"discrete_slider",
path=build_dir_slider
)
_page_selector = components.declare_component(
"page_selector",
path=build_dir_page_selector
)
_go_to = components.declare_component(
"go_to",
path=build_dir_go_to
)
_item_selector = components.declare_component(
"item_selector",
path=build_dir_item_selector
)
_image_selector = components.declare_component(
"image_selector",
path=build_dir_image_selector
)
_json_viewer = components.declare_component(
"json_viewer",
path=build_dir_json_viewer
)
_item_selector_zoom = components.declare_component(
"item_selector_zoom",
path=build_dir_item_selector_zoom
)
def discrete_slider(greeting, name, key, default=0):
return _discrete_slider(greeting=greeting, name=name, default=default, key=key)
def page_selector(startAt, incrementAmt, key=0):
return _page_selector(startAt=startAt, incrementAmt=incrementAmt, key=key, default=0)
def go_to(key=0):
return _go_to(key=key, default=0)
def item_selector(startAt, incrementAmt, datasetSize, key=0):
return _item_selector(startAt=startAt, incrementAmt=incrementAmt, datasetSize=datasetSize, key=key, default=startAt)
def image_selector(index, key=0):
return _image_selector(index=index, key=key, default=index)
def json_viewer(metadata, key=0):
return _json_viewer(jsonMetadata=metadata, key=key, default=0)
def item_selector_zoom(index, datasetSize, key=0):
return _item_selector_zoom(index=index, datasetSize=datasetSize, key=key, default=index)
# -------------------------------------END-------------------------------------------------------------------------------

7
com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/helpers/custom_components_setup.py.meta


fileFormatVersion: 2
guid: 2ebed5dc7c5346e48ad22053a6412bed
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

15
com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/helpers/folder_explorer.py


import sys
from PySide2.QtWidgets import QApplication, QFileDialog, QWidget
if not QApplication.instance():
app = QApplication(sys.argv)
else:
app = QApplication.instance()
dialog = QFileDialog()
dialog.setFileMode(QFileDialog.Directory)
dialog.setOptions(QFileDialog.DontUseNativeDialog)
if dialog.exec_():
fileName = dialog.selectedFiles()
print(fileName[0])

7
com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/helpers/folder_explorer.py.meta


fileFormatVersion: 2
guid: a44db7ff7da431f4291bce7ba7387660
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

7
com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/visualization/bbox.py.meta


fileFormatVersion: 2
guid: 91673f87b310626409b506deed701919
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

7
com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/visualization/bbox3d_plot.py.meta


fileFormatVersion: 2
guid: 94a0a0afde4cbfa49a2742bda9795793
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

182
com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/visualization/visualizers.py


import pathlib
from typing import Dict, List
import numpy as np
import PIL
import streamlit as st
from PIL import ImageFont
from PIL.Image import Image
from PIL.ImageDraw import ImageDraw
from pyquaternion import Quaternion
from visualization.bbox import BBox3D
from visualization.bbox3d_plot import add_single_bbox3d_on_image
def draw_image_with_boxes(
image: Image,
classes: Dict,
labels: List,
boxes: List[List],
colors: Dict,
):
"""
Draws an image in streamlit with labels and bounding boxes.
:param image: the PIL image
:type PIL:
:param classes: the class dictionary
:type Dict:
:param labels: list of integer object labels for the frame
:type List:
:param boxes: List of bounding boxes (as a List of coordinates) for the frame
:type List[List]:
:param colors: class colors
:type Dict:
:param header: Image header
:type str:
:param description: Image description
:type str:
"""
image = image.copy()
image_draw = ImageDraw(image)
# draw bounding boxes
path_to_font = pathlib.Path(__file__).parent.parent.absolute()
font = ImageFont.truetype(f"{path_to_font}/NairiNormal-m509.ttf", 15)
for label, box in zip(labels, boxes):
label = label - 1
class_name = classes[label]
image_draw.rectangle(box, outline=colors[class_name], width=2)
image_draw.text(
(box[0], box[1]), class_name, font=font, fill=colors[class_name]
)
return image
def draw_image_with_segmentation(
image: Image,
segmentation: Image,
):
"""
Draws an image in streamlit with labels and bounding boxes.
:param image: the PIL image
:type PIL:
:param height: height of the image
:type int:
:param width: width of the image
:type int:
:param segmentation: Segmentation Image
:type PIL:
:param header: Image header
:type str:
:param description: Image description
:type str:
"""
# image_draw = ImageDraw(segmentation)
rgba = np.array(segmentation.copy().convert("RGBA"))
r, g, b, a = rgba.T
black_areas = (r == 0) & (b == 0) & (g == 0) & (a == 255)
other_areas = (r != 0) | (b != 0) | (g != 0)
rgba[..., 0:4][black_areas.T] = (0, 0, 0, 0)
rgba[..., -1][other_areas.T] = int(0.6 * 255)
foreground = PIL.Image.fromarray(rgba)
image = image.copy()
image.paste(foreground, (0, 0), foreground)
return image
def draw_image_with_keypoints(
image: Image,
keypoints,
dataset,
):
image = image.copy()
image_draw = ImageDraw(image)
radius = int(dataset.metadata.image_size[0] * 5/500)
for i in range(len(keypoints)):
keypoint = keypoints[i]
if keypoint["state"] != 2:
continue
coordinates = (keypoint["x"]-radius, keypoint["y"]-radius, keypoint["x"]+radius, keypoint["y"]+radius)
color = dataset.metadata.annotations[dataset.ann_to_index['keypoints']]["spec"][0]["key_points"][i]["color"]
image_draw.ellipse(coordinates, fill=(int(255*color["r"]), int(255*color["g"]), int(255*color["b"]), 255))
skeleton = dataset.metadata.annotations[dataset.ann_to_index['keypoints']]["spec"][0]["skeleton"]
for bone in skeleton:
if keypoints[bone["joint1"]]["state"] != 2 or keypoints[bone["joint1"]]["state"] != 2:
continue
joint1 = (keypoints[bone["joint1"]]["x"], keypoints[bone["joint1"]]["y"])
joint2 = (keypoints[bone["joint2"]]["x"], keypoints[bone["joint2"]]["y"])
r = bone["color"]["r"]
g = bone["color"]["g"]
b = bone["color"]["b"]
image_draw.line([joint1, joint2], fill=(int(255*r), int(255*g), int(255*b), 255), width=int(dataset.metadata.image_size[0] * 3/500))
return image
def plot_bboxes3d(image, bboxes, projection, color, orthographic):
""" Plot an image with 3D bounding boxes
Currently this method should only be used for ground truth images, and
doesn't support predictions. If a list of colors is not provided as an
argument to this routine, the default color of green will be used.
Args:
image (PIL Image): a PIL image.
bboxes (list): a list of BBox3D objects
projection: The perspective projection of the camera which
captured the ground truth.
colors (list): a color list for boxes. Defaults to none. If
colors = None, it will default to coloring all boxes green.
Returns:
PIL image: a PIL image with bounding boxes drawn on it.
"""
np_image = np.array(image)
img_height, img_width, _ = np_image.shape
for i, box in enumerate(bboxes):
add_single_bbox3d_on_image(np_image, box, projection, color, orthographic=orthographic)
return PIL.Image.fromarray(np_image)
def read_bounding_box_3d(bounding_boxes_metadata):
bboxes = []
for b in bounding_boxes_metadata:
label_id = b['label_id']
translation = (b["translation"]["x"],b["translation"]["y"],b["translation"]["z"])
size = (b["size"]["x"], b["size"]["y"], b["size"]["z"])
rotation = b["rotation"]
rotation = Quaternion(
x=rotation["x"], y=rotation["y"], z=rotation["z"], w=rotation["w"]
)
#if label_mappings and label_id not in label_mappings:
# continue
box = BBox3D(
translation=translation,
size=size,
label=label_id,
sample_token=0,
score=1,
rotation=rotation,
)
bboxes.append(box)
return bboxes
def draw_image_with_box_3d(image, sensor, values, colors):
#TODO: IMPLEMENT COLORS
if 'camera_intrinsic' in sensor:
projection = np.array(sensor["camera_intrinsic"])
else:
projection = np.array([[1,0,0],[0,1,0],[0,0,1]])
boxes = read_bounding_box_3d(values)
img_with_boxes = plot_bboxes3d(image, boxes, projection, None, orthographic=(sensor["projection"] == "orthographic"))
return img_with_boxes

7
com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/visualization/visualizers.py.meta


fileFormatVersion: 2
guid: 80a72c59b3b091a4b908e185175242a3
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

7
com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/bbox.py.meta


fileFormatVersion: 2
guid: 4122f2f81144716438e5281967ce7272
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

7
com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/bbox3d_plot.py.meta


fileFormatVersion: 2
guid: 6ebe9fac6325103488e689f91f4e486e
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

/com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/bbox.py → /com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/visualization/bbox.py

/com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/bbox3d_plot.py → /com.unity.perception/Editor/Pyrception/pyrception-utils/pyrception_utils/visualization/bbox3d_plot.py

正在加载...
取消
保存