您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
1643 行
57 KiB
1643 行
57 KiB
using System;
|
|
using System.Collections.Generic;
|
|
using System.Linq;
|
|
using Unity.UIWidgets.foundation;
|
|
using UnityEngine;
|
|
|
|
namespace Unity.UIWidgets.ui {
|
|
public class Path {
|
|
const float _KAPPA90 = 0.5522847493f;
|
|
|
|
readonly List<float> _commands = new List<float>();
|
|
float _commandx;
|
|
float _commandy;
|
|
float _minX, _minY;
|
|
float _maxX, _maxY;
|
|
|
|
PathCache _cache;
|
|
|
|
internal PathCache flatten(float[] xform, float devicePixelRatio) {
|
|
if (this._cache != null && this._cache.canReuse(xform, devicePixelRatio)) {
|
|
return this._cache;
|
|
}
|
|
|
|
this._cache = new PathCache(xform, devicePixelRatio);
|
|
|
|
var i = 0;
|
|
while (i < this._commands.Count) {
|
|
var cmd = (PathCommand) this._commands[i];
|
|
switch (cmd) {
|
|
case PathCommand.moveTo:
|
|
this._cache.addPath();
|
|
this._cache.addPoint(this._commands[i + 1], this._commands[i + 2], PointFlags.corner);
|
|
i += 3;
|
|
break;
|
|
case PathCommand.lineTo:
|
|
this._cache.addPoint(this._commands[i + 1], this._commands[i + 2], PointFlags.corner);
|
|
i += 3;
|
|
break;
|
|
case PathCommand.bezierTo:
|
|
this._cache.tessellateBezier(
|
|
this._commands[i + 1], this._commands[i + 2],
|
|
this._commands[i + 3], this._commands[i + 4],
|
|
this._commands[i + 5], this._commands[i + 6], PointFlags.corner);
|
|
i += 7;
|
|
break;
|
|
case PathCommand.close:
|
|
this._cache.closePath();
|
|
i++;
|
|
break;
|
|
case PathCommand.winding:
|
|
this._cache.pathWinding((PathWinding) this._commands[i + 1]);
|
|
i += 2;
|
|
break;
|
|
default:
|
|
D.assert(false, "unknown cmd: " + cmd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
this._cache.normalize();
|
|
return this._cache;
|
|
}
|
|
|
|
public Path() {
|
|
this._reset();
|
|
}
|
|
|
|
void _reset() {
|
|
this._commands.Clear();
|
|
this._commandx = 0;
|
|
this._commandy = 0;
|
|
this._minX = float.MaxValue;
|
|
this._minY = float.MaxValue;
|
|
this._maxX = float.MinValue;
|
|
this._maxY = float.MinValue;
|
|
this._cache = null;
|
|
}
|
|
|
|
void _expandBounds(float x, float y) {
|
|
this._minX = Mathf.Min(this._minX, x);
|
|
this._minY = Mathf.Min(this._minY, y);
|
|
this._maxX = Mathf.Max(this._maxX, x);
|
|
this._maxY = Mathf.Max(this._maxY, y);
|
|
}
|
|
|
|
public Rect getBounds() {
|
|
if (this._minX >= this._maxX || this._minY >= this._maxY) {
|
|
return null;
|
|
}
|
|
|
|
return Rect.fromLTRB(this._minX, this._minY, this._maxX, this._maxY);
|
|
}
|
|
|
|
void _appendCommands(float[] commands) {
|
|
var i = 0;
|
|
while (i < commands.Length) {
|
|
var cmd = (PathCommand) commands[i];
|
|
switch (cmd) {
|
|
case PathCommand.moveTo:
|
|
case PathCommand.lineTo:
|
|
this._expandBounds(commands[i + 1], commands[i + 2]);
|
|
this._commandx = commands[i + 1];
|
|
this._commandy = commands[i + 2];
|
|
i += 3;
|
|
break;
|
|
case PathCommand.bezierTo:
|
|
this._expandBounds(commands[i + 1], commands[i + 2]);
|
|
this._expandBounds(commands[i + 3], commands[i + 4]);
|
|
this._expandBounds(commands[i + 5], commands[i + 6]);
|
|
this._commandx = commands[i + 5];
|
|
this._commandy = commands[i + 6];
|
|
i += 7;
|
|
break;
|
|
case PathCommand.close:
|
|
i++;
|
|
break;
|
|
case PathCommand.winding:
|
|
i += 2;
|
|
break;
|
|
default:
|
|
D.assert(false, "unknown cmd: " + cmd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
this._commands.AddRange(commands);
|
|
this._cache = null;
|
|
}
|
|
|
|
public void moveTo(double x, double y) {
|
|
this._appendCommands(new[] {
|
|
(float) PathCommand.moveTo,
|
|
(float) x, (float) y,
|
|
});
|
|
}
|
|
|
|
public void lineTo(double x, double y) {
|
|
this._appendCommands(new[] {
|
|
(float) PathCommand.lineTo,
|
|
(float) x, (float) y,
|
|
});
|
|
}
|
|
|
|
public void bezierTo(double c1x, double c1y, double c2x, double c2y, double x, double y) {
|
|
this._appendCommands(new[] {
|
|
(float) PathCommand.bezierTo,
|
|
(float) c1x, (float) c1y, (float) c2x, (float) c2y, (float) x, (float) y,
|
|
});
|
|
}
|
|
|
|
public void quadTo(double cx, double cy, double x, double y) {
|
|
var x0 = this._commandx;
|
|
var y0 = this._commandy;
|
|
|
|
this._appendCommands(new[] {
|
|
(float) PathCommand.bezierTo,
|
|
(float) (x0 + 2.0f / 3.0f * (cx - x0)), (float) (y0 + 2.0f / 3.0f * (cy - y0)),
|
|
(float) (x + 2.0f / 3.0f * (cx - x)), (float) (y + 2.0f / 3.0f * (cy - y)),
|
|
(float) x, (float) y,
|
|
});
|
|
}
|
|
|
|
public void close() {
|
|
this._appendCommands(new[] {
|
|
(float) PathCommand.close,
|
|
});
|
|
}
|
|
|
|
public void winding(PathWinding dir) {
|
|
this._appendCommands(new[] {
|
|
(float) PathCommand.winding,
|
|
(float) dir
|
|
});
|
|
}
|
|
|
|
public void addRect(Rect rect) {
|
|
this._appendCommands(new[] {
|
|
(float) PathCommand.moveTo, (float) rect.left, (float) rect.top,
|
|
(float) PathCommand.lineTo, (float) rect.left, (float) rect.bottom,
|
|
(float) PathCommand.lineTo, (float) rect.right, (float) rect.bottom,
|
|
(float) PathCommand.lineTo, (float) rect.right, (float) rect.top,
|
|
(float) PathCommand.close
|
|
});
|
|
}
|
|
|
|
public void addRRect(RRect rrect) {
|
|
float w = (float) rrect.width;
|
|
float h = (float) rrect.height;
|
|
float halfw = Mathf.Abs(w) * 0.5f;
|
|
float halfh = Mathf.Abs(h) * 0.5f;
|
|
float signW = Mathf.Sign(w);
|
|
float signH = Mathf.Sign(h);
|
|
|
|
float rxBL = Mathf.Min((float) rrect.blRadiusX, halfw) * signW;
|
|
float ryBL = Mathf.Min((float) rrect.blRadiusY, halfh) * signH;
|
|
float rxBR = Mathf.Min((float) rrect.brRadiusX, halfw) * signW;
|
|
float ryBR = Mathf.Min((float) rrect.brRadiusY, halfh) * signH;
|
|
float rxTR = Mathf.Min((float) rrect.trRadiusX, halfw) * signW;
|
|
float ryTR = Mathf.Min((float) rrect.trRadiusY, halfh) * signH;
|
|
float rxTL = Mathf.Min((float) rrect.tlRadiusX, halfw) * signW;
|
|
float ryTL = Mathf.Min((float) rrect.tlRadiusY, halfh) * signH;
|
|
float x = (float) rrect.left;
|
|
float y = (float) rrect.top;
|
|
|
|
this._appendCommands(new[] {
|
|
(float) PathCommand.moveTo, x, y + ryTL,
|
|
(float) PathCommand.lineTo, x, y + h - ryBL,
|
|
(float) PathCommand.bezierTo, x, y + h - ryBL * (1 - _KAPPA90),
|
|
x + rxBL * (1 - _KAPPA90), y + h, x + rxBL, y + h,
|
|
(float) PathCommand.lineTo, x + w - rxBR, y + h,
|
|
(float) PathCommand.bezierTo, x + w - rxBR * (1 - _KAPPA90), y + h,
|
|
x + w, y + h - ryBR * (1 - _KAPPA90), x + w, y + h - ryBR,
|
|
(float) PathCommand.lineTo, x + w, y + ryTR,
|
|
(float) PathCommand.bezierTo, x + w, y + ryTR * (1 - _KAPPA90),
|
|
x + w - rxTR * (1 - _KAPPA90), y, x + w - rxTR, y,
|
|
(float) PathCommand.lineTo, x + rxTL, y,
|
|
(float) PathCommand.bezierTo, x + rxTL * (1 - _KAPPA90), y,
|
|
x, y + ryTL * (1 - _KAPPA90), x, y + ryTL,
|
|
(float) PathCommand.close,
|
|
});
|
|
}
|
|
|
|
public void addEllipse(double cx, double cy, double rx, double ry) {
|
|
this._appendCommands(new[] {
|
|
(float) PathCommand.moveTo, (float) (cx - rx), (float) cy,
|
|
(float) PathCommand.bezierTo, (float) (cx - rx), (float) (cy + ry * _KAPPA90),
|
|
(float) (cx - rx * _KAPPA90), (float) (cy + ry), (float) cx, (float) (cy + ry),
|
|
(float) PathCommand.bezierTo, (float) (cx + rx * _KAPPA90), (float) (cy + ry),
|
|
(float) (cx + rx), (float) (cy + ry * _KAPPA90), (float) (cx + rx), (float) cy,
|
|
(float) PathCommand.bezierTo, (float) (cx + rx), (float) (cy - ry * _KAPPA90),
|
|
(float) (cx + rx * _KAPPA90), (float) (cy - ry), (float) cx, (float) (cy - ry),
|
|
(float) PathCommand.bezierTo, (float) (cx - rx * _KAPPA90), (float) (cy - ry),
|
|
(float) (cx - rx), (float) (cy - ry * _KAPPA90), (float) (cx - rx), (float) cy,
|
|
(float) PathCommand.close,
|
|
});
|
|
}
|
|
|
|
public void addCircle(double cx, double cy, double r) {
|
|
this.addEllipse(cx, cy, r, r);
|
|
}
|
|
|
|
public void addOval(Rect oval) {
|
|
D.assert(oval != null);
|
|
var center = oval.center;
|
|
this.addEllipse(center.dx, center.dy, oval.width / 2, oval.height / 2);
|
|
}
|
|
|
|
public void addPolygon(IList<Offset> points, bool close) {
|
|
D.assert(points != null);
|
|
if (points.Count == 0) {
|
|
return;
|
|
}
|
|
|
|
var commands = new List<float>();
|
|
commands.Add((float) PathCommand.moveTo);
|
|
commands.Add((float) points[0].dx);
|
|
commands.Add((float) points[0].dy);
|
|
|
|
for (int i = 1; i < points.Count; i++) {
|
|
var point = points[i];
|
|
commands.Add((float) PathCommand.lineTo);
|
|
commands.Add((float) point.dx);
|
|
commands.Add((float) point.dy);
|
|
}
|
|
|
|
if (close) {
|
|
commands.Add((float) PathCommand.close);
|
|
}
|
|
|
|
this._appendCommands(commands.ToArray());
|
|
}
|
|
|
|
public void addPath(Path path, Offset offset) {
|
|
D.assert(path != null);
|
|
|
|
var commands = new List<float>();
|
|
|
|
var i = 0;
|
|
while (i < path._commands.Count) {
|
|
var cmd = (PathCommand) path._commands[i];
|
|
switch (cmd) {
|
|
case PathCommand.moveTo:
|
|
case PathCommand.lineTo:
|
|
commands.Add(path._commands[i]);
|
|
commands.Add(path._commands[i + 1] + (float) offset.dx);
|
|
commands.Add(path._commands[i + 2] + (float) offset.dy);
|
|
i += 3;
|
|
break;
|
|
case PathCommand.bezierTo:
|
|
commands.Add(path._commands[i]);
|
|
commands.Add(path._commands[i + 1] + (float) offset.dx);
|
|
commands.Add(path._commands[i + 2] + (float) offset.dy);
|
|
commands.Add(path._commands[i + 3] + (float) offset.dx);
|
|
commands.Add(path._commands[i + 4] + (float) offset.dy);
|
|
commands.Add(path._commands[i + 5] + (float) offset.dx);
|
|
commands.Add(path._commands[i + 6] + (float) offset.dy);
|
|
i += 7;
|
|
break;
|
|
case PathCommand.close:
|
|
commands.Add(path._commands[i]);
|
|
i++;
|
|
break;
|
|
case PathCommand.winding:
|
|
commands.Add(path._commands[i]);
|
|
commands.Add(path._commands[i + 1]);
|
|
i += 2;
|
|
break;
|
|
default:
|
|
D.assert(false, "unknown cmd: " + cmd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
this._appendCommands(commands.ToArray());
|
|
}
|
|
|
|
public bool contains(Offset point) {
|
|
var bounds = this.getBounds();
|
|
if (bounds == null) {
|
|
return false;
|
|
}
|
|
|
|
if (!bounds.containsInclusive(point)) {
|
|
return false;
|
|
}
|
|
|
|
float x = (float) point.dx;
|
|
float y = (float) point.dy;
|
|
|
|
float lastMoveToX = 0;
|
|
float lastMoveToY = 0;
|
|
float commandx = 0;
|
|
float commandy = 0;
|
|
PathWinding winding = PathWinding.counterClockwise;
|
|
|
|
var totalW = 0;
|
|
var w = 0;
|
|
var i = 0;
|
|
while (i < this._commands.Count) {
|
|
var cmd = (PathCommand) this._commands[i];
|
|
switch (cmd) {
|
|
case PathCommand.moveTo:
|
|
if (lastMoveToX != commandx || lastMoveToY != commandy) {
|
|
w += windingLine(
|
|
commandx, commandy,
|
|
lastMoveToX, lastMoveToY,
|
|
x, y);
|
|
}
|
|
|
|
if (w != 0) {
|
|
totalW += winding == PathWinding.counterClockwise ? w : -w;
|
|
w = 0;
|
|
}
|
|
|
|
lastMoveToX = commandx = this._commands[i + 1];
|
|
lastMoveToY = commandy = this._commands[i + 2];
|
|
winding = PathWinding.counterClockwise;
|
|
i += 3;
|
|
break;
|
|
case PathCommand.lineTo:
|
|
w += windingLine(
|
|
commandx, commandy,
|
|
this._commands[i + 1], this._commands[i + 2],
|
|
x, y);
|
|
commandx = this._commands[i + 1];
|
|
commandy = this._commands[i + 2];
|
|
i += 3;
|
|
break;
|
|
case PathCommand.bezierTo:
|
|
w += windingCubic(
|
|
commandx, commandy,
|
|
this._commands[i + 1], this._commands[i + 2],
|
|
this._commands[i + 3], this._commands[i + 4],
|
|
this._commands[i + 5], this._commands[i + 6],
|
|
x, y);
|
|
commandx = this._commands[i + 5];
|
|
commandy = this._commands[i + 6];
|
|
i += 7;
|
|
break;
|
|
case PathCommand.close:
|
|
i++;
|
|
break;
|
|
case PathCommand.winding:
|
|
winding = (PathWinding) this._commands[i + 1];
|
|
i += 2;
|
|
break;
|
|
default:
|
|
D.assert(false, "unknown cmd: " + cmd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (lastMoveToX != commandx || lastMoveToY != commandy) {
|
|
w += windingLine(
|
|
commandx, commandy,
|
|
lastMoveToX, lastMoveToY,
|
|
x, y);
|
|
}
|
|
|
|
if (w != 0) {
|
|
totalW += winding == PathWinding.counterClockwise ? w : -w;
|
|
w = 0;
|
|
}
|
|
|
|
return totalW != 0;
|
|
}
|
|
|
|
static int windingLine(float x0, float y0, float x1, float y1, float x, float y) {
|
|
if (y0 == y1) {
|
|
return 0;
|
|
}
|
|
|
|
int dir = 1; // down. y0 < y1
|
|
float minY = y0;
|
|
float maxY = y1;
|
|
|
|
if (y0 > y1) {
|
|
dir = -1;
|
|
minY = y1;
|
|
maxY = y0;
|
|
}
|
|
|
|
if (y < minY || y >= maxY) {
|
|
return 0;
|
|
}
|
|
|
|
float cross = (x1 - x0) * (y - y0) - (x - x0) * (y1 - y0);
|
|
if (cross == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (cross.sign() == dir) {
|
|
return 0;
|
|
}
|
|
|
|
return dir;
|
|
}
|
|
|
|
static int windingCubic(float x1, float y1, float x2, float y2, float x3, float y3, float x4, float y4,
|
|
float x, float y) {
|
|
|
|
Offset[] src = {
|
|
new Offset(x1, y1),
|
|
new Offset(x2, y2),
|
|
new Offset(x3, y3),
|
|
new Offset(x4, y4),
|
|
};
|
|
|
|
Offset[] dst = new Offset[10];
|
|
int n = _chopCubicAtYExtrema(src, dst);
|
|
|
|
int w = 0;
|
|
for (int i = 0; i <= n; ++i) {
|
|
w += _winding_mono_cubic(dst, i * 3, x, y);
|
|
}
|
|
return w;
|
|
}
|
|
|
|
static int _winding_mono_cubic(Offset[] pts, int ptsBase, float x, float y) {
|
|
float y0 = (float) pts[ptsBase + 0].dy;
|
|
float y3 = (float) pts[ptsBase + 3].dy;
|
|
|
|
if (y0 == y3) {
|
|
return 0;
|
|
}
|
|
|
|
int dir = 1; // down. y0 < y3
|
|
float minY = y0;
|
|
float maxY = y3;
|
|
|
|
if (y0 > y3) {
|
|
dir = -1;
|
|
minY = y3;
|
|
maxY = y0;
|
|
}
|
|
|
|
if (y < minY || y >= maxY) {
|
|
return 0;
|
|
}
|
|
|
|
// quickreject or quickaccept
|
|
float minX = float.MaxValue, maxX = float.MinValue;
|
|
for (int i = 0; i < 4; i++) {
|
|
var dx = (float) pts[ptsBase + i].dx;
|
|
if (dx < minX) {
|
|
minX = dx;
|
|
}
|
|
if (dx > maxX) {
|
|
maxX = dx;
|
|
}
|
|
}
|
|
|
|
if (x < minX) {
|
|
return 0;
|
|
}
|
|
if (x > maxX) {
|
|
return dir;
|
|
}
|
|
|
|
// compute the actual x(t) value
|
|
float t;
|
|
if (!_chopMonoAtY(pts, ptsBase, y, out t)) {
|
|
return 0;
|
|
}
|
|
|
|
float xt = _eval_cubic_pts(
|
|
(float) pts[ptsBase + 0].dx,
|
|
(float) pts[ptsBase + 1].dx,
|
|
(float) pts[ptsBase + 2].dx,
|
|
(float) pts[ptsBase + 3].dx, t);
|
|
|
|
return xt < x ? dir : 0;
|
|
}
|
|
|
|
static float _eval_cubic_pts(float c0, float c1, float c2, float c3,
|
|
float t) {
|
|
float A = c3 + 3*(c1 - c2) - c0;
|
|
float B = 3*(c2 - c1 - c1 + c0);
|
|
float C = 3*(c1 - c0);
|
|
float D = c0;
|
|
return _poly_eval(A, B, C, D, t);
|
|
}
|
|
|
|
static float _poly_eval(float A, float B, float C, float D, float t) {
|
|
return ((A * t + B) * t + C) * t + D;
|
|
}
|
|
|
|
static bool _chopMonoAtY(Offset[] pts, int ptsBase, float y, out float t) {
|
|
float[] ycrv = {
|
|
(float) pts[ptsBase + 0].dy - y,
|
|
(float) pts[ptsBase + 1].dy - y,
|
|
(float) pts[ptsBase + 2].dy - y,
|
|
(float) pts[ptsBase + 3].dy - y
|
|
};
|
|
|
|
// NEWTON_RAPHSON Quadratic convergence, typically <= 3 iterations.
|
|
// Initial guess.
|
|
// is not only monotonic but degenerate.
|
|
float t1 = ycrv[0] / (ycrv[0] - ycrv[3]);
|
|
|
|
// Newton's iterations.
|
|
const float tol = 1f / 16384; // This leaves 2 fixed noise bits.
|
|
float t0;
|
|
const int maxiters = 5;
|
|
int iters = 0;
|
|
bool converged;
|
|
do {
|
|
t0 = t1;
|
|
float y01 = MathUtils.lerpFloat(ycrv[0], ycrv[1], t0);
|
|
float y12 = MathUtils.lerpFloat(ycrv[1], ycrv[2], t0);
|
|
float y23 = MathUtils.lerpFloat(ycrv[2], ycrv[3], t0);
|
|
float y012 = MathUtils.lerpFloat(y01, y12, t0);
|
|
float y123 = MathUtils.lerpFloat(y12, y23, t0);
|
|
float y0123 = MathUtils.lerpFloat(y012, y123, t0);
|
|
float yder = (y123 - y012) * 3;
|
|
t1 -= y0123 / yder;
|
|
converged = (t1 - t0).abs() <= tol; // NaN-safe
|
|
++iters;
|
|
} while (!converged && (iters < maxiters));
|
|
t = t1;
|
|
|
|
// The result might be valid, even if outside of the range [0, 1], but
|
|
// we never evaluate a Bezier outside this interval, so we return false.
|
|
if (t1 < 0 || t1 > 1) {
|
|
return false;
|
|
}
|
|
|
|
return converged;
|
|
}
|
|
|
|
static void _flatten_double_cubic_extrema(Offset[] dst, int dstBase) {
|
|
var dy = dst[dstBase + 3].dy;
|
|
dst[dstBase + 2] = new Offset(dst[dstBase + 2].dx, dy);
|
|
dst[dstBase + 4] = new Offset(dst[dstBase + 4].dx, dy);
|
|
}
|
|
|
|
static int _chopCubicAtYExtrema(Offset[] src, Offset[] dst) {
|
|
D.assert(src != null && src.Length == 4);
|
|
D.assert(dst != null && dst.Length == 10);
|
|
|
|
float[] tValues = new float[2];
|
|
int roots = _findCubicExtrema(
|
|
(float) src[0].dy, (float) src[1].dy, (float) src[2].dy, (float) src[3].dy,
|
|
tValues);
|
|
|
|
_chopCubicAt(src, dst, tValues, roots);
|
|
if (dst != null && roots > 0) {
|
|
// we do some cleanup to ensure our Y extrema are flat
|
|
_flatten_double_cubic_extrema(dst, 0);
|
|
if (roots == 2) {
|
|
_flatten_double_cubic_extrema(dst, 3);
|
|
}
|
|
}
|
|
return roots;
|
|
}
|
|
|
|
static void _chopCubicAt(Offset[] src, int srcBase, Offset[] dst, int dstBase, float t) {
|
|
D.assert(src != null && (src.Length == 4 || src.Length == 10));
|
|
D.assert(dst != null && dst.Length == 10);
|
|
|
|
D.assert(t > 0 && t < 1);
|
|
|
|
var p0 = src[srcBase + 0];
|
|
var p1 = src[srcBase + 1];
|
|
var p2 = src[srcBase + 2];
|
|
var p3 = src[srcBase + 3];
|
|
|
|
var ab = Offset.lerp(p0, p1, t);
|
|
var bc = Offset.lerp(p1, p2, t);
|
|
var cd = Offset.lerp(p2, p3, t);
|
|
var abc = Offset.lerp(ab, bc, t);
|
|
var bcd = Offset.lerp(bc, cd, t);
|
|
var abcd = Offset.lerp(abc, bcd, t);
|
|
|
|
dst[dstBase + 0] = p0;
|
|
dst[dstBase + 1] = ab;
|
|
dst[dstBase + 2] = abc;
|
|
dst[dstBase + 3] = abcd;
|
|
dst[dstBase + 4] = bcd;
|
|
dst[dstBase + 5] = cd;
|
|
dst[dstBase + 6] = p3;
|
|
}
|
|
|
|
static void _chopCubicAt(Offset[] src, Offset[] dst, float[] tValues, int roots) {
|
|
D.assert(src != null && src.Length == 4);
|
|
D.assert(dst != null && dst.Length == 10);
|
|
|
|
D.assert(() => {
|
|
for (int i = 0; i < roots - 1; i++) {
|
|
D.assert(0 < tValues[i] && tValues[i] < 1);
|
|
D.assert(0 < tValues[i + 1] && tValues[i + 1] < 1);
|
|
D.assert(tValues[i] < tValues[i + 1]);
|
|
}
|
|
return true;
|
|
});
|
|
|
|
if (dst != null) {
|
|
if (roots == 0) {
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
} else {
|
|
float t = tValues[0];
|
|
|
|
int srcBase = 0;
|
|
int dstBase = 0;
|
|
for (int i = 0; i < roots; i++) {
|
|
_chopCubicAt(src, srcBase, dst, dstBase, t);
|
|
if (i == roots - 1) {
|
|
break;
|
|
}
|
|
|
|
dstBase += 3;
|
|
src = dst;
|
|
srcBase = dstBase;
|
|
|
|
// watch out in case the renormalized t isn't in range
|
|
if (_valid_unit_divide(tValues[i + 1] - tValues[i], 1 - tValues[i], out t) == 0) {
|
|
// if we can't, just create a degenerate cubic
|
|
dst[dstBase + 4] = dst[dstBase + 5] = dst[dstBase + 6] = src[srcBase + 3];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Cubic'(t) = At^2 + Bt + C, where
|
|
A = 3(-a + 3(b - c) + d)
|
|
B = 6(a - 2b + c)
|
|
C = 3(b - a)
|
|
Solve for t, keeping only those that fit between 0 < t < 1
|
|
*/
|
|
static int _findCubicExtrema(float a, float b, float c, float d, float[] tValues) {
|
|
// we divide A,B,C by 3 to simplify
|
|
float A = d - a + 3 * (b - c);
|
|
float B = 2 * (a - b - b + c);
|
|
float C = b - a;
|
|
|
|
return _findUnitQuadRoots(A, B, C, tValues);
|
|
}
|
|
|
|
static int _valid_unit_divide(float numer, float denom, out float ratio) {
|
|
ratio = 0;
|
|
|
|
if (numer < 0) {
|
|
numer = -numer;
|
|
denom = -denom;
|
|
}
|
|
|
|
if (denom == 0 || numer == 0 || numer >= denom) {
|
|
return 0;
|
|
}
|
|
|
|
float r = numer / denom;
|
|
if (float.IsNaN(r)) {
|
|
return 0;
|
|
}
|
|
D.assert(r >= 0 && r < 1, $"numer {numer}, denom {denom}, r {r}");
|
|
if (r == 0) {
|
|
// catch underflow if numer <<<< denom
|
|
return 0;
|
|
}
|
|
|
|
ratio = r;
|
|
return 1;
|
|
}
|
|
|
|
// Just returns its argument, but makes it easy to set a break-point to know when
|
|
// _findUnitQuadRoots is going to return 0 (an error).
|
|
static int _return_check_zero(int value) {
|
|
if (value == 0) {
|
|
return 0;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
static int _findUnitQuadRoots(float A, float B, float C, float[] roots) {
|
|
if (A == 0) {
|
|
return _return_check_zero(_valid_unit_divide(-C, B, out roots[0]));
|
|
}
|
|
|
|
int r = 0;
|
|
|
|
// use doubles so we don't overflow temporarily trying to compute R
|
|
double dr = (double) B * B - 4 * (double) A * C;
|
|
if (dr < 0) {
|
|
return _return_check_zero(0);
|
|
}
|
|
dr = Math.Sqrt(dr);
|
|
float R = (float) dr;
|
|
|
|
if (float.IsInfinity(R)) {
|
|
return _return_check_zero(0);
|
|
}
|
|
|
|
float Q = (B < 0) ? -(B - R) / 2 : -(B + R) / 2;
|
|
r += _valid_unit_divide(Q, A, out roots[r]);
|
|
r += _valid_unit_divide(C, Q, out roots[r]);
|
|
if (r == 2) {
|
|
if (roots[0] > roots[1]) {
|
|
float tmp = roots[0];
|
|
roots[0] = roots[1];
|
|
roots[1] = tmp;
|
|
} else if (roots[0] == roots[1]) {
|
|
// nearly-equal?
|
|
r -= 1; // skip the double root
|
|
}
|
|
}
|
|
return _return_check_zero(r);
|
|
}
|
|
}
|
|
|
|
public enum PathWinding {
|
|
counterClockwise = 1, // which just means the order as the input is.
|
|
clockwise = 2, // which just means the reversed order.
|
|
}
|
|
|
|
[Flags]
|
|
enum PointFlags {
|
|
corner = 0x01,
|
|
left = 0x02,
|
|
bevel = 0x04,
|
|
innerBevel = 0x08,
|
|
}
|
|
|
|
class PathPoint {
|
|
public float x, y;
|
|
public float dx, dy;
|
|
public float len;
|
|
public float dmx, dmy;
|
|
public PointFlags flags;
|
|
}
|
|
|
|
enum PathCommand {
|
|
moveTo,
|
|
lineTo,
|
|
bezierTo,
|
|
close,
|
|
winding,
|
|
}
|
|
|
|
class PathPath {
|
|
public int first;
|
|
public int count;
|
|
public bool closed;
|
|
public int ifill;
|
|
public int nfill;
|
|
public int istroke;
|
|
public int nstroke;
|
|
public PathWinding winding;
|
|
public bool convex;
|
|
}
|
|
|
|
class PathCache {
|
|
readonly float[] _xform;
|
|
readonly float _devicePixelRatio;
|
|
readonly float _distTol;
|
|
readonly float _tessTol;
|
|
|
|
readonly List<PathPath> _paths = new List<PathPath>();
|
|
readonly List<PathPoint> _points = new List<PathPoint>();
|
|
readonly List<Vector3> _vertices = new List<Vector3>();
|
|
|
|
MeshMesh _fillMesh;
|
|
bool _fillConvex;
|
|
|
|
MeshMesh _strokeMesh;
|
|
float _strokeWidth;
|
|
StrokeCap _lineCap;
|
|
StrokeJoin _lineJoin;
|
|
float _miterLimit;
|
|
|
|
public PathCache(float[] xform, float devicePixelRatio) {
|
|
D.assert(xform != null && xform.Length == 6);
|
|
|
|
this._xform = xform;
|
|
this._devicePixelRatio = devicePixelRatio;
|
|
this._distTol = 0.01f / devicePixelRatio;
|
|
this._tessTol = 0.25f / devicePixelRatio;
|
|
}
|
|
|
|
public bool canReuse(float[] xform, float devicePixelRatio) {
|
|
D.assert(xform != null && xform.Length == 6);
|
|
|
|
for (var i = 0; i < 6; ++i) {
|
|
if (this._xform[i] != xform[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (this._devicePixelRatio != devicePixelRatio) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
public void addPath() {
|
|
this._paths.Add(new PathPath {
|
|
first = this._points.Count,
|
|
winding = PathWinding.counterClockwise
|
|
});
|
|
}
|
|
|
|
public void addPoint(float x, float y, PointFlags flags) {
|
|
PathUtils.transformPoint(out x, out y, this._xform, x, y);
|
|
|
|
this._addPoint(new PathPoint {x = x, y = y, flags = flags});
|
|
}
|
|
|
|
void _addPoint(PathPoint point) {
|
|
if (this._paths.Count == 0) {
|
|
this.addPath();
|
|
}
|
|
|
|
var path = this._paths.Last();
|
|
if (path.count > 0) {
|
|
var pt = this._points.Last();
|
|
if (PathUtils.ptEquals(pt.x, pt.y, point.x, point.y, this._distTol)) {
|
|
pt.flags |= point.flags;
|
|
return;
|
|
}
|
|
}
|
|
|
|
this._points.Add(point);
|
|
path.count++;
|
|
}
|
|
|
|
public void tessellateBezier(
|
|
float x2, float y2,
|
|
float x3, float y3, float x4, float y4,
|
|
PointFlags flags) {
|
|
float x1, y1;
|
|
if (this._points.Count == 0) {
|
|
x1 = 0;
|
|
y1 = 0;
|
|
} else {
|
|
var pt = this._points.Last();
|
|
x1 = pt.x;
|
|
y1 = pt.y;
|
|
}
|
|
|
|
PathUtils.transformPoint(out x2, out y2, this._xform, x2, y2);
|
|
PathUtils.transformPoint(out x3, out y3, this._xform, x3, y3);
|
|
PathUtils.transformPoint(out x4, out y4, this._xform, x4, y4);
|
|
|
|
var points = TessellationGenerator.tessellateBezier(x1, y1, x2, y2, x3, y3, x4, y4, this._tessTol);
|
|
points[points.Count - 1].flags = flags;
|
|
foreach (var point in points) {
|
|
this._addPoint(point);
|
|
}
|
|
}
|
|
|
|
public void closePath() {
|
|
if (this._paths.Count == 0) {
|
|
return;
|
|
}
|
|
|
|
var path = this._paths.Last();
|
|
path.closed = true;
|
|
}
|
|
|
|
public void pathWinding(PathWinding winding) {
|
|
if (this._paths.Count == 0) {
|
|
return;
|
|
}
|
|
|
|
var path = this._paths.Last();
|
|
path.winding = winding;
|
|
}
|
|
|
|
public void normalize() {
|
|
for (var j = 0; j < this._paths.Count; j++) {
|
|
var path = this._paths[j];
|
|
if (path.count <= 1) {
|
|
continue;
|
|
}
|
|
|
|
var ip0 = path.first + path.count - 1;
|
|
var ip1 = path.first;
|
|
|
|
var p0 = this._points[ip0];
|
|
var p1 = this._points[ip1];
|
|
if (PathUtils.ptEquals(p0.x, p0.y, p1.x, p1.y, this._distTol)) {
|
|
path.count--;
|
|
path.closed = true;
|
|
}
|
|
|
|
if (path.count > 2) {
|
|
if (path.winding == PathWinding.clockwise) {
|
|
PathUtils.polyReverse(this._points, path.first, path.count);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void _expandFill() {
|
|
for (var j = 0; j < this._paths.Count; j++) {
|
|
var path = this._paths[j];
|
|
if (path.count <= 2) {
|
|
continue;
|
|
}
|
|
|
|
var ip0 = path.first + path.count - 1;
|
|
var ip1 = path.first;
|
|
for (var i = 0; i < path.count; i++) {
|
|
var p0 = this._points[ip0];
|
|
var p1 = this._points[ip1];
|
|
p0.dx = p1.x - p0.x; // no need to normalize
|
|
p0.dy = p1.y - p0.y;
|
|
ip0 = ip1++;
|
|
}
|
|
|
|
path.convex = true;
|
|
|
|
ip0 = path.first + path.count - 1;
|
|
ip1 = path.first;
|
|
for (var i = 0; i < path.count; i++) {
|
|
var p0 = this._points[ip0];
|
|
var p1 = this._points[ip1];
|
|
|
|
float cross = p1.dx * p0.dy - p0.dx * p1.dy;
|
|
if (cross < 0.0f) {
|
|
path.convex = false;
|
|
}
|
|
|
|
ip0 = ip1++;
|
|
}
|
|
}
|
|
|
|
this._vertices.Clear();
|
|
for (var i = 0; i < this._paths.Count; i++) {
|
|
var path = this._paths[i];
|
|
if (path.count <= 2) {
|
|
continue;
|
|
}
|
|
|
|
path.ifill = this._vertices.Count;
|
|
for (var j = 0; j < path.count; j++) {
|
|
var p = this._points[path.first + j];
|
|
this._vertices.Add(new Vector2(p.x, p.y));
|
|
}
|
|
|
|
path.nfill = this._vertices.Count - path.ifill;
|
|
}
|
|
}
|
|
|
|
public MeshMesh getFillMesh(out bool convex) {
|
|
if (this._fillMesh != null) {
|
|
convex = this._fillConvex;
|
|
return this._fillMesh;
|
|
}
|
|
|
|
this._expandFill();
|
|
|
|
var cindices = 0;
|
|
for (var i = 0; i < this._paths.Count; i++) {
|
|
var path = this._paths[i];
|
|
if (path.count <= 2) {
|
|
continue;
|
|
}
|
|
|
|
if (path.nfill > 0) {
|
|
D.assert(path.nfill >= 2);
|
|
cindices += (path.nfill - 2) * 3;
|
|
}
|
|
}
|
|
|
|
var indices = new List<int>(cindices);
|
|
for (var i = 0; i < this._paths.Count; i++) {
|
|
var path = this._paths[i];
|
|
if (path.count <= 2) {
|
|
continue;
|
|
}
|
|
|
|
if (path.nfill > 0) {
|
|
for (var j = 2; j < path.nfill; j++) {
|
|
indices.Add(path.ifill);
|
|
indices.Add(path.ifill + j);
|
|
indices.Add(path.ifill + j - 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
D.assert(indices.Count == cindices);
|
|
|
|
var mesh = new MeshMesh(this._vertices, indices);
|
|
this._fillMesh = mesh;
|
|
|
|
this._fillConvex = false;
|
|
for (var i = 0; i < this._paths.Count; i++) {
|
|
var path = this._paths[i];
|
|
if (path.count <= 2) {
|
|
continue;
|
|
}
|
|
|
|
if (this._fillConvex) {
|
|
// if more than two paths, convex is false.
|
|
this._fillConvex = false;
|
|
break;
|
|
}
|
|
|
|
if (!path.convex) {
|
|
// if not convex, convex is false.
|
|
break;
|
|
}
|
|
|
|
this._fillConvex = true;
|
|
}
|
|
|
|
convex = this._fillConvex;
|
|
return this._fillMesh;
|
|
}
|
|
|
|
void _calculateJoins(float w, StrokeJoin lineJoin, float miterLimit) {
|
|
float iw = w > 0.0f ? 1.0f / w : 0.0f;
|
|
|
|
for (var i = 0; i < this._paths.Count; i++) {
|
|
var path = this._paths[i];
|
|
if (path.count <= 1) {
|
|
continue;
|
|
}
|
|
|
|
var ip0 = path.first + path.count - 1;
|
|
var ip1 = path.first;
|
|
|
|
for (var j = 0; j < path.count; j++) {
|
|
var p0 = this._points[ip0];
|
|
var p1 = this._points[ip1];
|
|
p0.dx = p1.x - p0.x;
|
|
p0.dy = p1.y - p0.y;
|
|
p0.len = PathUtils.normalize(ref p0.dx, ref p0.dy);
|
|
ip0 = ip1++;
|
|
}
|
|
|
|
ip0 = path.first + path.count - 1;
|
|
ip1 = path.first;
|
|
for (var j = 0; j < path.count; j++) {
|
|
var p0 = this._points[ip0];
|
|
var p1 = this._points[ip1];
|
|
float dlx0 = p0.dy;
|
|
float dly0 = -p0.dx;
|
|
float dlx1 = p1.dy;
|
|
float dly1 = -p1.dx;
|
|
|
|
// Calculate extrusions
|
|
p1.dmx = (dlx0 + dlx1) * 0.5f;
|
|
p1.dmy = (dly0 + dly1) * 0.5f;
|
|
float dmr2 = p1.dmx * p1.dmx + p1.dmy * p1.dmy;
|
|
if (dmr2 > 0.000001f) {
|
|
float scale = 1.0f / dmr2;
|
|
if (scale > 600.0f) {
|
|
scale = 600.0f;
|
|
}
|
|
|
|
p1.dmx *= scale;
|
|
p1.dmy *= scale;
|
|
}
|
|
|
|
// Clear flags, but keep the corner.
|
|
p1.flags &= PointFlags.corner;
|
|
|
|
// Keep track of left turns.
|
|
float cross = p1.dx * p0.dy - p0.dx * p1.dy;
|
|
if (cross > 0.0f) {
|
|
p1.flags |= PointFlags.left;
|
|
}
|
|
|
|
// Calculate if we should use bevel or miter for inner join.
|
|
float limit = Mathf.Max(1.01f, Mathf.Min(p0.len, p1.len) * iw);
|
|
if (dmr2 * limit * limit < 1.0f) {
|
|
p1.flags |= PointFlags.innerBevel;
|
|
}
|
|
|
|
// Check to see if the corner needs to be beveled.
|
|
if ((p1.flags & PointFlags.corner) != 0) {
|
|
if (lineJoin == StrokeJoin.bevel ||
|
|
lineJoin == StrokeJoin.round || dmr2 * miterLimit * miterLimit < 1.0f) {
|
|
p1.flags |= PointFlags.bevel;
|
|
}
|
|
}
|
|
|
|
ip0 = ip1++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void _expandStroke(float w, StrokeCap lineCap, StrokeJoin lineJoin, float miterLimit) {
|
|
this._calculateJoins(w, lineJoin, miterLimit);
|
|
|
|
int ncap = 0;
|
|
if (lineCap == StrokeCap.round || lineJoin == StrokeJoin.round) {
|
|
ncap = PathUtils.curveDivs(w, Mathf.PI, this._tessTol);
|
|
}
|
|
|
|
this._vertices.Clear();
|
|
for (var i = 0; i < this._paths.Count; i++) {
|
|
var path = this._paths[i];
|
|
if (path.count <= 1) {
|
|
continue;
|
|
}
|
|
|
|
path.istroke = this._vertices.Count;
|
|
|
|
int s, e, ip0, ip1;
|
|
if (path.closed) {
|
|
ip0 = path.first + path.count - 1;
|
|
ip1 = path.first;
|
|
s = 0;
|
|
e = path.count;
|
|
} else {
|
|
ip0 = path.first;
|
|
ip1 = path.first + 1;
|
|
s = 1;
|
|
e = path.count - 1;
|
|
}
|
|
|
|
var p0 = this._points[ip0];
|
|
var p1 = this._points[ip1];
|
|
|
|
if (!path.closed) {
|
|
if (lineCap == StrokeCap.butt) {
|
|
this._vertices.buttCapStart(p0, p0.dx, p0.dy, w, 0.0f);
|
|
} else if (lineCap == StrokeCap.square) {
|
|
this._vertices.buttCapStart(p0, p0.dx, p0.dy, w, w);
|
|
} else {
|
|
// round
|
|
this._vertices.roundCapStart(p0, p0.dx, p0.dy, w, ncap);
|
|
}
|
|
}
|
|
|
|
for (var j = s; j < e; j++) {
|
|
p0 = this._points[ip0];
|
|
p1 = this._points[ip1];
|
|
|
|
if ((p1.flags & (PointFlags.bevel | PointFlags.innerBevel)) != 0) {
|
|
if (lineJoin == StrokeJoin.round) {
|
|
this._vertices.roundJoin(p0, p1, w, w, ncap);
|
|
} else {
|
|
this._vertices.bevelJoin(p0, p1, w, w);
|
|
}
|
|
} else {
|
|
this._vertices.Add(new Vector2(p1.x + p1.dmx * w, p1.y + p1.dmy * w));
|
|
this._vertices.Add(new Vector2(p1.x - p1.dmx * w, p1.y - p1.dmy * w));
|
|
}
|
|
|
|
ip0 = ip1++;
|
|
}
|
|
|
|
if (!path.closed) {
|
|
p0 = this._points[ip0];
|
|
p1 = this._points[ip1];
|
|
if (lineCap == StrokeCap.butt) {
|
|
this._vertices.buttCapEnd(p1, p0.dx, p0.dy, w, 0.0f);
|
|
} else if (lineCap == StrokeCap.square) {
|
|
this._vertices.buttCapEnd(p1, p0.dx, p0.dy, w, w);
|
|
} else {
|
|
// round
|
|
this._vertices.roundCapEnd(p1, p0.dx, p0.dy, w, ncap);
|
|
}
|
|
} else {
|
|
this._vertices.Add(this._vertices[path.istroke]);
|
|
this._vertices.Add(this._vertices[path.istroke + 1]);
|
|
}
|
|
|
|
path.nstroke = this._vertices.Count - path.istroke;
|
|
}
|
|
}
|
|
|
|
public MeshMesh getStrokeMesh(float strokeWidth, StrokeCap lineCap, StrokeJoin lineJoin, float miterLimit) {
|
|
if (this._strokeMesh != null &&
|
|
this._strokeWidth == strokeWidth &&
|
|
this._lineCap == lineCap &&
|
|
this._lineJoin == lineJoin &&
|
|
this._miterLimit == miterLimit) {
|
|
return this._strokeMesh;
|
|
}
|
|
|
|
this._expandStroke(strokeWidth, lineCap, lineJoin, miterLimit);
|
|
|
|
var cindices = 0;
|
|
for (var i = 0; i < this._paths.Count; i++) {
|
|
var path = this._paths[i];
|
|
if (path.count <= 1) {
|
|
continue;
|
|
}
|
|
|
|
if (path.nstroke > 0) {
|
|
D.assert(path.nstroke >= 2);
|
|
cindices += (path.nstroke - 2) * 3;
|
|
}
|
|
}
|
|
|
|
var indices = new List<int>(cindices);
|
|
for (var i = 0; i < this._paths.Count; i++) {
|
|
var path = this._paths[i];
|
|
if (path.count <= 1) {
|
|
continue;
|
|
}
|
|
|
|
if (path.nstroke > 0) {
|
|
for (var j = 2; j < path.nstroke; j++) {
|
|
if ((j & 1) == 0) {
|
|
indices.Add(path.istroke + j - 1);
|
|
indices.Add(path.istroke + j - 2);
|
|
indices.Add(path.istroke + j);
|
|
} else {
|
|
indices.Add(path.istroke + j - 2);
|
|
indices.Add(path.istroke + j - 1);
|
|
indices.Add(path.istroke + j);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
D.assert(indices.Count == cindices);
|
|
|
|
this._strokeMesh = new MeshMesh(this._vertices, indices);
|
|
this._strokeWidth = strokeWidth;
|
|
this._lineCap = lineCap;
|
|
this._lineJoin = lineJoin;
|
|
this._miterLimit = miterLimit;
|
|
return this._strokeMesh;
|
|
}
|
|
}
|
|
|
|
|
|
static class PathUtils {
|
|
public static bool ptEquals(float x1, float y1, float x2, float y2, float tol) {
|
|
float dx = x2 - x1;
|
|
float dy = y2 - y1;
|
|
|
|
if (dx <= -tol || dx >= tol || dy <= -tol || dy >= tol) {
|
|
return false;
|
|
}
|
|
|
|
return dx * dx + dy * dy < tol * tol;
|
|
}
|
|
|
|
public static void transformPoint(out float dx, out float dy, float[] t, float sx, float sy) {
|
|
dx = sx * t[0] + sy * t[2] + t[4];
|
|
dy = sx * t[1] + sy * t[3] + t[5];
|
|
}
|
|
|
|
public static float triarea2(float ax, float ay, float bx, float by, float cx, float cy) {
|
|
float abx = bx - ax;
|
|
float aby = by - ay;
|
|
float acx = cx - ax;
|
|
float acy = cy - ay;
|
|
return acx * aby - abx * acy;
|
|
}
|
|
|
|
public static float polyArea(List<PathPoint> points, int s, int npts) {
|
|
float area = 0;
|
|
for (var i = s + 2; i < s + npts; i++) {
|
|
var a = points[s];
|
|
var b = points[i - 1];
|
|
var c = points[i];
|
|
area += triarea2(a.x, a.y, b.x, b.y, c.x, c.y);
|
|
}
|
|
|
|
return area * 0.5f;
|
|
}
|
|
|
|
public static void polyReverse(List<PathPoint> pts, int s, int npts) {
|
|
int i = s, j = s + npts - 1;
|
|
while (i < j) {
|
|
var tmp = pts[i];
|
|
pts[i] = pts[j];
|
|
pts[j] = tmp;
|
|
i++;
|
|
j--;
|
|
}
|
|
}
|
|
|
|
public static float normalize(ref float x, ref float y) {
|
|
float d = Mathf.Sqrt(x * x + y * y);
|
|
if (d > 1e-6f) {
|
|
float id = 1.0f / d;
|
|
x *= id;
|
|
y *= id;
|
|
}
|
|
|
|
return d;
|
|
}
|
|
|
|
public static void buttCapStart(this List<Vector3> dst, PathPoint p,
|
|
float dx, float dy, float w, float d) {
|
|
float px = p.x - dx * d;
|
|
float py = p.y - dy * d;
|
|
float dlx = dy;
|
|
float dly = -dx;
|
|
|
|
dst.Add(new Vector2(px + dlx * w, py + dly * w));
|
|
dst.Add(new Vector2(px - dlx * w, py - dly * w));
|
|
}
|
|
|
|
public static void buttCapEnd(this List<Vector3> dst, PathPoint p,
|
|
float dx, float dy, float w, float d) {
|
|
float px = p.x + dx * d;
|
|
float py = p.y + dy * d;
|
|
float dlx = dy;
|
|
float dly = -dx;
|
|
|
|
dst.Add(new Vector2(px + dlx * w, py + dly * w));
|
|
dst.Add(new Vector2(px - dlx * w, py - dly * w));
|
|
}
|
|
|
|
public static void roundCapStart(this List<Vector3> dst, PathPoint p,
|
|
float dx, float dy, float w, int ncap) {
|
|
float px = p.x;
|
|
float py = p.y;
|
|
float dlx = dy;
|
|
float dly = -dx;
|
|
|
|
|
|
dst.Add(new Vector2(px + dlx * w, py + dly * w));
|
|
dst.Add(new Vector2(px - dlx * w, py - dly * w));
|
|
for (var i = 0; i < ncap; i++) {
|
|
float a = i / (float) (ncap - 1) * Mathf.PI;
|
|
float ax = Mathf.Cos(a) * w, ay = Mathf.Sin(a) * w;
|
|
dst.Add(new Vector2(px, py));
|
|
dst.Add(new Vector2(px - dlx * ax + dx * ay, py - dly * ax + dy * ay));
|
|
}
|
|
}
|
|
|
|
public static void roundCapEnd(this List<Vector3> dst, PathPoint p,
|
|
float dx, float dy, float w, int ncap) {
|
|
float px = p.x;
|
|
float py = p.y;
|
|
float dlx = dy;
|
|
float dly = -dx;
|
|
|
|
for (var i = 0; i < ncap; i++) {
|
|
float a = i / (float) (ncap - 1) * Mathf.PI;
|
|
float ax = Mathf.Cos(a) * w, ay = Mathf.Sin(a) * w;
|
|
dst.Add(new Vector2(px - dlx * ax - dx * ay, py - dly * ax - dy * ay));
|
|
dst.Add(new Vector2(px, py));
|
|
}
|
|
|
|
dst.Add(new Vector2(px + dlx * w, py + dly * w));
|
|
dst.Add(new Vector2(px - dlx * w, py - dly * w));
|
|
}
|
|
|
|
public static void chooseBevel(bool bevel, PathPoint p0, PathPoint p1, float w,
|
|
out float x0, out float y0, out float x1, out float y1) {
|
|
if (bevel) {
|
|
x0 = p1.x + p0.dy * w;
|
|
y0 = p1.y - p0.dx * w;
|
|
x1 = p1.x + p1.dy * w;
|
|
y1 = p1.y - p1.dx * w;
|
|
} else {
|
|
x0 = p1.x + p1.dmx * w;
|
|
y0 = p1.y + p1.dmy * w;
|
|
x1 = p1.x + p1.dmx * w;
|
|
y1 = p1.y + p1.dmy * w;
|
|
}
|
|
}
|
|
|
|
public static int curveDivs(float r, float arc, float tol) {
|
|
float da = Mathf.Acos(r / (r + tol)) * 2.0f;
|
|
return Mathf.Max(2, Mathf.CeilToInt(arc / da));
|
|
}
|
|
|
|
public static void roundJoin(this List<Vector3> dst, PathPoint p0, PathPoint p1,
|
|
float lw, float rw, int ncap) {
|
|
float dlx0 = p0.dy;
|
|
float dly0 = -p0.dx;
|
|
float dlx1 = p1.dy;
|
|
float dly1 = -p1.dx;
|
|
|
|
if ((p1.flags & PointFlags.left) != 0) {
|
|
float lx0, ly0, lx1, ly1;
|
|
chooseBevel((p1.flags & PointFlags.innerBevel) != 0, p0, p1, lw,
|
|
out lx0, out ly0, out lx1, out ly1);
|
|
|
|
float a0 = Mathf.Atan2(-dly0, -dlx0);
|
|
float a1 = Mathf.Atan2(-dly1, -dlx1);
|
|
if (a1 > a0) {
|
|
a1 -= Mathf.PI * 2;
|
|
}
|
|
|
|
dst.Add(new Vector2(lx0, ly0));
|
|
dst.Add(new Vector2(p1.x - dlx0 * rw, p1.y - dly0 * rw));
|
|
|
|
var n = Mathf.CeilToInt((a0 - a1) / Mathf.PI * ncap).clamp(2, ncap);
|
|
for (var i = 0; i < n; i++) {
|
|
float u = i / (float) (n - 1);
|
|
float a = a0 + u * (a1 - a0);
|
|
float rx = p1.x + Mathf.Cos(a) * rw;
|
|
float ry = p1.y + Mathf.Sin(a) * rw;
|
|
|
|
dst.Add(new Vector2(p1.x, p1.y));
|
|
dst.Add(new Vector2(rx, ry));
|
|
}
|
|
|
|
dst.Add(new Vector2(lx1, ly1));
|
|
dst.Add(new Vector2(p1.x - dlx1 * rw, p1.y - dly1 * rw));
|
|
} else {
|
|
float rx0, ry0, rx1, ry1;
|
|
chooseBevel((p1.flags & PointFlags.innerBevel) != 0, p0, p1, -rw,
|
|
out rx0, out ry0, out rx1, out ry1);
|
|
|
|
float a0 = Mathf.Atan2(dly0, dlx0);
|
|
float a1 = Mathf.Atan2(dly1, dlx1);
|
|
if (a1 < a0) {
|
|
a1 += Mathf.PI * 2;
|
|
}
|
|
|
|
dst.Add(new Vector2(p1.x + dlx0 * lw, p1.y + dly0 * lw));
|
|
dst.Add(new Vector2(rx0, ry0));
|
|
|
|
var n = Mathf.CeilToInt((a1 - a0) / Mathf.PI * ncap).clamp(2, ncap);
|
|
for (var i = 0; i < n; i++) {
|
|
float u = i / (float) (n - 1);
|
|
float a = a0 + u * (a1 - a0);
|
|
float lx = p1.x + Mathf.Cos(a) * lw;
|
|
float ly = p1.y + Mathf.Sin(a) * lw;
|
|
|
|
dst.Add(new Vector2(lx, ly));
|
|
dst.Add(new Vector2(p1.x, p1.y));
|
|
}
|
|
|
|
dst.Add(new Vector2(p1.x + dlx1 * lw, p1.y + dly1 * lw));
|
|
dst.Add(new Vector2(rx1, ry1));
|
|
}
|
|
}
|
|
|
|
public static void bevelJoin(this List<Vector3> dst, PathPoint p0, PathPoint p1,
|
|
float lw, float rw) {
|
|
float rx0, ry0, rx1, ry1;
|
|
float lx0, ly0, lx1, ly1;
|
|
|
|
float dlx0 = p0.dy;
|
|
float dly0 = -p0.dx;
|
|
float dlx1 = p1.dy;
|
|
float dly1 = -p1.dx;
|
|
|
|
if ((p1.flags & PointFlags.left) != 0) {
|
|
chooseBevel((p1.flags & PointFlags.innerBevel) != 0, p0, p1, lw,
|
|
out lx0, out ly0, out lx1, out ly1);
|
|
|
|
dst.Add(new Vector2 {x = lx0, y = ly0});
|
|
dst.Add(new Vector2 {x = p1.x - dlx0 * rw, y = p1.y - dly0 * rw});
|
|
|
|
if ((p1.flags & PointFlags.bevel) != 0) {
|
|
dst.Add(new Vector2(lx0, ly0));
|
|
dst.Add(new Vector2(p1.x - dlx0 * rw, p1.y - dly0 * rw));
|
|
dst.Add(new Vector2(lx1, ly1));
|
|
dst.Add(new Vector2(p1.x - dlx1 * rw, p1.y - dly1 * rw));
|
|
} else {
|
|
rx0 = p1.x - p1.dmx * rw;
|
|
ry0 = p1.y - p1.dmy * rw;
|
|
dst.Add(new Vector2(p1.x, p1.y));
|
|
dst.Add(new Vector2(p1.x - dlx0 * rw, p1.y - dly0 * rw));
|
|
dst.Add(new Vector2(rx0, ry0));
|
|
dst.Add(new Vector2(rx0, ry0));
|
|
dst.Add(new Vector2(p1.x, p1.y));
|
|
dst.Add(new Vector2(p1.x - dlx1 * rw, p1.y - dly1 * rw));
|
|
}
|
|
|
|
dst.Add(new Vector2(lx1, ly1));
|
|
dst.Add(new Vector2(p1.x - dlx1 * rw, p1.y - dly1 * rw));
|
|
} else {
|
|
chooseBevel((p1.flags & PointFlags.innerBevel) != 0, p0, p1, -rw,
|
|
out rx0, out ry0, out rx1, out ry1);
|
|
|
|
dst.Add(new Vector2(p1.x + dlx0 * lw, p1.y + dly0 * lw));
|
|
dst.Add(new Vector2(rx0, ry0));
|
|
|
|
if ((p1.flags & PointFlags.bevel) != 0) {
|
|
dst.Add(new Vector2(p1.x + dlx0 * lw, p1.y + dly0 * lw));
|
|
dst.Add(new Vector2(rx0, ry0));
|
|
dst.Add(new Vector2(p1.x + dlx1 * lw, p1.y + dly1 * lw));
|
|
dst.Add(new Vector2(rx1, ry1));
|
|
} else {
|
|
lx0 = p1.x + p1.dmx * lw;
|
|
ly0 = p1.y + p1.dmy * lw;
|
|
dst.Add(new Vector2(p1.x + dlx0 * lw, p1.y + dly0 * lw));
|
|
dst.Add(new Vector2(p1.x, p1.y));
|
|
dst.Add(new Vector2(lx0, ly0));
|
|
dst.Add(new Vector2(lx0, ly0));
|
|
dst.Add(new Vector2(p1.x + dlx1 * lw, p1.y + dly1 * lw));
|
|
dst.Add(new Vector2(p1.x, p1.y));
|
|
}
|
|
|
|
dst.Add(new Vector2(p1.x + dlx1 * lw, p1.y + dly1 * lw));
|
|
dst.Add(new Vector2(rx1, ry1));
|
|
}
|
|
}
|
|
}
|
|
|
|
class MeshMesh {
|
|
public readonly List<Vector3> vertices;
|
|
public readonly List<int> triangles;
|
|
public readonly List<Vector2> uv;
|
|
public readonly Rect bounds;
|
|
|
|
MeshMesh _boundsMesh;
|
|
static readonly List<int> _boundsTriangles = new List<int>(6) {0, 2, 1, 1, 2, 3};
|
|
|
|
public MeshMesh boundsMesh {
|
|
get {
|
|
if (this._boundsMesh != null) {
|
|
return this._boundsMesh;
|
|
}
|
|
|
|
this._boundsMesh = new MeshMesh(this.bounds);
|
|
return this._boundsMesh;
|
|
}
|
|
}
|
|
|
|
public MeshMesh(Rect rect) {
|
|
this.vertices = new List<Vector3>(4) {
|
|
new Vector3((float) rect.right, (float) rect.bottom),
|
|
new Vector3((float) rect.right, (float) rect.top),
|
|
new Vector3((float) rect.left, (float) rect.bottom),
|
|
new Vector3((float) rect.left, (float) rect.top)
|
|
};
|
|
|
|
this.triangles = _boundsTriangles;
|
|
this.bounds = rect;
|
|
this._boundsMesh = this;
|
|
}
|
|
|
|
public MeshMesh(List<Vector3> vertices, List<int> triangles, List<Vector2> uv = null) {
|
|
D.assert(vertices != null);
|
|
D.assert(vertices.Count > 0);
|
|
D.assert(triangles != null);
|
|
D.assert(triangles.Count > 0);
|
|
D.assert(uv == null || uv.Count == vertices.Count);
|
|
|
|
this.vertices = vertices;
|
|
this.triangles = triangles;
|
|
this.uv = uv;
|
|
|
|
double minX = vertices[0].x;
|
|
double maxX = vertices[0].x;
|
|
double minY = vertices[0].y;
|
|
double maxY = vertices[0].y;
|
|
|
|
for (int i = 1; i < vertices.Count; i++) {
|
|
var vertex = vertices[i];
|
|
if (vertex.x < minX) {
|
|
minX = vertex.x;
|
|
}
|
|
if (vertex.x > maxX) {
|
|
maxX = vertex.x;
|
|
}
|
|
if (vertex.y < minY) {
|
|
minY = vertex.y;
|
|
}
|
|
if (vertex.y > maxY) {
|
|
maxY = vertex.y;
|
|
}
|
|
}
|
|
|
|
this.bounds = Rect.fromLTRB(minX, minY, maxX, maxY);
|
|
}
|
|
|
|
public MeshMesh transform(float[] xform) {
|
|
var transVertices = new List<Vector3>(this.vertices.Count);
|
|
|
|
foreach (var vertex in this.vertices) {
|
|
float x, y;
|
|
PathUtils.transformPoint(out x, out y, xform, vertex.x, vertex.y);
|
|
transVertices.Add(new Vector3(x, y));
|
|
}
|
|
|
|
return new MeshMesh(transVertices, this.triangles, this.uv);
|
|
}
|
|
}
|
|
|
|
public class MeshPool : IDisposable {
|
|
readonly Queue<Mesh> _pool = new Queue<Mesh>();
|
|
|
|
public Mesh getMesh() {
|
|
if (this._pool.Count > 0) {
|
|
var mesh = this._pool.Dequeue();
|
|
D.assert(mesh);
|
|
return mesh;
|
|
} else {
|
|
var mesh = new Mesh();
|
|
mesh.hideFlags = HideFlags.HideAndDontSave;
|
|
return mesh;
|
|
}
|
|
}
|
|
|
|
public void returnMesh(Mesh mesh) {
|
|
D.assert(mesh.hideFlags == HideFlags.HideAndDontSave);
|
|
this._pool.Enqueue(mesh);
|
|
}
|
|
|
|
public void Dispose() {
|
|
foreach (var mesh in this._pool) {
|
|
ObjectUtils.SafeDestroy(mesh);
|
|
}
|
|
this._pool.Clear();
|
|
}
|
|
}
|
|
}
|