您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
195 行
6.5 KiB
195 行
6.5 KiB
using System;
|
|
using System.Collections.Generic;
|
|
using System.Linq;
|
|
using Unity.UIWidgets.foundation;
|
|
|
|
namespace Unity.UIWidgets.gestures {
|
|
class _Vector {
|
|
internal _Vector(int size) {
|
|
this._offset = 0;
|
|
this._length = size;
|
|
this._elements = Enumerable.Repeat(0.0, size).ToList();
|
|
}
|
|
|
|
_Vector(List<double> values, int offset, int length) {
|
|
this._offset = offset;
|
|
this._length = length;
|
|
this._elements = values;
|
|
}
|
|
|
|
internal static _Vector fromVOL(List<double> values, int offset, int length) {
|
|
return new _Vector(values, offset, length);
|
|
}
|
|
|
|
readonly int _offset;
|
|
|
|
readonly int _length;
|
|
|
|
readonly List<double> _elements;
|
|
|
|
public double this[int i] {
|
|
get { return this._elements[i + this._offset]; }
|
|
set { this._elements[i + this._offset] = value; }
|
|
}
|
|
|
|
public static double operator *(_Vector a, _Vector b) {
|
|
double result = 0.0;
|
|
for (int i = 0; i < a._length; i += 1) {
|
|
result += a[i] * b[i];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
public double norm() {
|
|
return Math.Sqrt(this * this);
|
|
}
|
|
}
|
|
|
|
class _Matrix {
|
|
internal _Matrix(int rows, int cols) {
|
|
this._columns = cols;
|
|
this._elements = Enumerable.Repeat(0.0, rows * cols).ToList();
|
|
}
|
|
|
|
readonly int _columns;
|
|
readonly List<double> _elements;
|
|
|
|
public double this[int row, int col] {
|
|
get { return this._elements[row * this._columns + col]; }
|
|
set { this._elements[row * this._columns + col] = value; }
|
|
}
|
|
|
|
public _Vector getRow(int row) {
|
|
return _Vector.fromVOL(
|
|
this._elements,
|
|
row * this._columns,
|
|
this._columns
|
|
);
|
|
}
|
|
}
|
|
|
|
public class PolynomialFit {
|
|
public PolynomialFit(int degree) {
|
|
this.coefficients = Enumerable.Repeat(0.0, degree + 1).ToList();
|
|
}
|
|
|
|
public readonly List<double> coefficients;
|
|
|
|
public double confidence;
|
|
}
|
|
|
|
public class LeastSquaresSolver {
|
|
public LeastSquaresSolver(List<double> x, List<double> y, List<double> w) {
|
|
D.assert(x != null && y != null && w != null);
|
|
D.assert(x.Count == y.Count);
|
|
D.assert(y.Count == w.Count);
|
|
this.x = x;
|
|
this.y = y;
|
|
this.w = w;
|
|
}
|
|
|
|
public readonly List<double> x;
|
|
|
|
public readonly List<double> y;
|
|
|
|
public readonly List<double> w;
|
|
|
|
/// Fits a polynomial of the given degree to the data points.
|
|
public PolynomialFit solve(int degree) {
|
|
if (degree > this.x.Count) {
|
|
// Not enough data to fit a curve.
|
|
return null;
|
|
}
|
|
|
|
PolynomialFit result = new PolynomialFit(degree);
|
|
|
|
// Shorthands for the purpose of notation equivalence to original C++ code.
|
|
int m = this.x.Count;
|
|
int n = degree + 1;
|
|
|
|
// Expand the X vector to a matrix A, pre-multiplied by the weights.
|
|
_Matrix a = new _Matrix(n, m);
|
|
for (int h = 0; h < m; h += 1) {
|
|
a[0, h] = this.w[h];
|
|
for (int i = 1; i < n; i += 1) {
|
|
a[i, h] = a[i - 1, h] * this.x[h];
|
|
}
|
|
}
|
|
|
|
// Apply the Gram-Schmidt process to A to obtain its QR decomposition.
|
|
|
|
// Orthonormal basis, column-major ordVectorer.
|
|
_Matrix q = new _Matrix(n, m);
|
|
// Upper triangular matrix, row-major order.
|
|
_Matrix r = new _Matrix(n, n);
|
|
for (int j = 0; j < n; j += 1) {
|
|
for (int h = 0; h < m; h += 1) {
|
|
q[j, h] = a[j, h];
|
|
}
|
|
for (int i = 0; i < j; i += 1) {
|
|
double dot = q.getRow(j) * q.getRow(i);
|
|
for (int h = 0; h < m; h += 1) {
|
|
q[j, h] = q[j, h] - dot * q[i, h];
|
|
}
|
|
}
|
|
|
|
double norm = q.getRow(j).norm();
|
|
if (norm < 0.000001) {
|
|
// Vectors are linearly dependent or zero so no solution.
|
|
return null;
|
|
}
|
|
|
|
double inverseNorm = 1.0 / norm;
|
|
for (int h = 0; h < m; h += 1) {
|
|
q[j, h] = q[j, h] * inverseNorm;
|
|
}
|
|
for (int i = 0; i < n; i += 1) {
|
|
r[j, i] = i < j ? 0.0 : q.getRow(j) * a.getRow(i);
|
|
}
|
|
}
|
|
|
|
// Solve R B = Qt W Y to find B. This is easy because R is upper triangular.
|
|
// We just work from bottom-right to top-left calculating B's coefficients.
|
|
_Vector wy = new _Vector(m);
|
|
for (int h = 0; h < m; h += 1) {
|
|
wy[h] = this.y[h] * this.w[h];
|
|
}
|
|
for (int i = n - 1; i >= 0; i -= 1) {
|
|
result.coefficients[i] = q.getRow(i) * wy;
|
|
for (int j = n - 1; j > i; j -= 1) {
|
|
result.coefficients[i] -= r[i, j] * result.coefficients[j];
|
|
}
|
|
result.coefficients[i] /= r[i, i];
|
|
}
|
|
|
|
// Calculate the coefficient of determination (confidence) as:
|
|
// 1 - (sumSquaredError / sumSquaredTotal)
|
|
// ...where sumSquaredError is the residual sum of squares (variance of the
|
|
// error), and sumSquaredTotal is the total sum of squares (variance of the
|
|
// data) where each has been weighted.
|
|
double yMean = 0.0;
|
|
for (int h = 0; h < m; h += 1) {
|
|
yMean += this.y[h];
|
|
}
|
|
yMean /= m;
|
|
|
|
double sumSquaredError = 0.0;
|
|
double sumSquaredTotal = 0.0;
|
|
for (int h = 0; h < m; h += 1) {
|
|
double term = 1.0;
|
|
double err = this.y[h] - result.coefficients[0];
|
|
for (int i = 1; i < n; i += 1) {
|
|
term *= this.x[h];
|
|
err -= term * result.coefficients[i];
|
|
}
|
|
|
|
sumSquaredError += this.w[h] * this.w[h] * err * err;
|
|
double v = this.y[h] - yMean;
|
|
sumSquaredTotal += this.w[h] * this.w[h] * v * v;
|
|
}
|
|
|
|
result.confidence = sumSquaredTotal <= 0.000001 ? 1.0 : 1.0 - (sumSquaredError / sumSquaredTotal);
|
|
return result;
|
|
}
|
|
}
|
|
}
|