您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

176 行
6.8 KiB

using System;
using Unity.Burst;
using Unity.Collections;
using Unity.Jobs;
using Unity.Mathematics;
namespace UnityEngine.Experimental.Perception.Randomization.Randomizers.SampleRandomizers
{
/// <summary>
/// Utility for generating lists of poisson disk sampled points
/// </summary>
public static class PoissonDiskSampling
{
const int k_DefaultSamplingResolution = 30;
// Algorithm sourced from Robert Bridson's paper "Fast Poisson Disk Sampling in Arbitrary Dimensions"
// https://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph07-poissondisk.pdf
/// <summary>
/// Returns a list of poisson disc sampled points for a given area and density
/// </summary>
/// <param name="width">Width of the sampling area</param>
/// <param name="height">Height of the sampling area</param>
/// <param name="minimumRadius">The minimum distance required between each sampled point</param>
/// <param name="seed">The random seed used to initialize the algorithm state</param>
/// <param name="samplingResolution">The number of potential points sampled around every valid point</param>
/// <returns>The list of generated poisson points</returns>
public static NativeList<float2> GenerateSamples(
float width,
float height,
float minimumRadius,
uint seed = 12345,
int samplingResolution = k_DefaultSamplingResolution)
{
if (width < 0)
throw new ArgumentException($"Width {width} cannot be negative");
if (height < 0)
throw new ArgumentException($"Height {height} cannot be negative");
if (minimumRadius < 0)
throw new ArgumentException($"MinimumRadius {minimumRadius} cannot be negative");
if (seed == 0)
throw new ArgumentException("Random seed cannot be 0");
if (samplingResolution <= 0)
throw new ArgumentException($"SamplingAttempts {samplingResolution} cannot be <= 0");
var samples = new NativeList<float2>(Allocator.TempJob);
new SampleJob
{
width = width,
height = height,
minimumRadius = minimumRadius,
seed = seed,
samplingResolution = samplingResolution,
samples = samples
}.Schedule().Complete();
return samples;
}
[BurstCompile]
struct SampleJob : IJob
{
public float width;
public float height;
public float minimumRadius;
public uint seed;
public int samplingResolution;
public NativeList<float2> samples;
public void Execute()
{
var newSamples = Sample(width, height, minimumRadius, seed, samplingResolution, Allocator.Temp);
samples.AddRange(newSamples);
newSamples.Dispose();
}
}
static NativeList<float2> Sample(
float width,
float height,
float minimumRadius,
uint seed,
int samplingResolution,
Allocator allocator)
{
var samples = new NativeList<float2>(allocator);
var random = new Unity.Mathematics.Random(seed);
var cellSize = minimumRadius / math.sqrt(2);
var rows = Mathf.FloorToInt(height / cellSize);
var cols = Mathf.FloorToInt(width / cellSize);
var gridSize = rows * cols;
if (gridSize == 0)
return samples;
var rSqr = minimumRadius * minimumRadius;
var samplingArc = (math.PI * 2) / samplingResolution;
var halfSamplingArc = samplingArc / 2;
var gridToSampleIndex = new NativeArray<int>(gridSize, Allocator.Temp);
for (var i = 0; i < gridSize; i++)
gridToSampleIndex[i] = -1;
var activePoints = new NativeList<float2>(Allocator.Temp);
var firstPoint = new float2(
random.NextFloat(0.4f, 0.6f) * width,
random.NextFloat(0.4f, 0.6f) * height);
samples.Add(firstPoint);
var firstPointCol = Mathf.FloorToInt(firstPoint.x / cellSize);
var firstPointRow = Mathf.FloorToInt(firstPoint.y / cellSize);
gridToSampleIndex[firstPointCol + firstPointRow * cols] = 0;
activePoints.Add(firstPoint);
while (activePoints.Length > 0)
{
var randomIndex = random.NextInt(0, activePoints.Length);
var activePoint = activePoints[randomIndex];
var nextPointFound = false;
for (var i = 0; i < samplingResolution; i++)
{
var length = random.NextFloat(minimumRadius, minimumRadius * 2);
var angle = samplingArc * i + random.NextFloat(-halfSamplingArc, halfSamplingArc);
var newPoint = activePoint + new float2(
math.cos(angle) * length,
math.sin(angle) * length);
var col = Mathf.FloorToInt(newPoint.x / cellSize);
var row = Mathf.FloorToInt(newPoint.y / cellSize);
if (row < 0 || row >= rows || col < 0 || col >= cols)
continue;
var tooCloseToAnotherPoint = false;
for (var x = -2; x <= 2; x++)
{
if ((col + x) < 0 || (col + x) >= cols)
continue;
for (var y = -2; y <= 2; y++)
{
if ((row + y) < 0 || (row + y) >= rows)
continue;
var gridIndex = (col + x) + (row + y) * cols;
if (gridToSampleIndex[gridIndex] < 0)
continue;
var distanceSqr = math.distancesq(samples[gridToSampleIndex[gridIndex]], newPoint);
if (distanceSqr >= rSqr)
continue;
tooCloseToAnotherPoint = true;
break;
}
}
if (tooCloseToAnotherPoint)
continue;
nextPointFound = true;
activePoints.Add(newPoint);
samples.Add(newPoint);
gridToSampleIndex[col + row * cols] = samples.Length - 1;
}
if (!nextPointFound)
activePoints.RemoveAtSwapBack(randomIndex);
}
gridToSampleIndex.Dispose();
activePoints.Dispose();
return samples;
}
}
}