您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
182 行
7.0 KiB
182 行
7.0 KiB
using System;
|
|
using System.Runtime.CompilerServices;
|
|
using Unity.Mathematics;
|
|
|
|
namespace UnityEngine.Experimental.Perception.Randomization.Samplers
|
|
{
|
|
/// <summary>
|
|
/// A set of utility functions for defining sampler interfaces
|
|
/// </summary>
|
|
public static class SamplerUtility
|
|
{
|
|
/// <summary>
|
|
/// A large prime number
|
|
/// </summary>
|
|
public const uint largePrime = 0x202A96CF;
|
|
|
|
/// <summary>
|
|
/// The number of samples to generate per job batch in an IJobParallelForBatch job
|
|
/// </summary>
|
|
public const int samplingBatchSize = 64;
|
|
|
|
/// <summary>
|
|
/// Returns the sampler's display name
|
|
/// </summary>
|
|
/// <param name="samplerType">The sampler type</param>
|
|
/// <returns>The display name</returns>
|
|
public static string GetSamplerDisplayName(Type samplerType)
|
|
{
|
|
return samplerType.Name.Replace("Sampler", string.Empty);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Non-deterministically generates a non-zero random seed
|
|
/// </summary>
|
|
/// <returns>A non-deterministically generated random seed</returns>
|
|
public static uint GenerateRandomSeed()
|
|
{
|
|
return (uint)Random.Range(1, uint.MaxValue);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Hashes using constants generated from a program that maximizes the avalanche effect, independence of
|
|
/// output bit changes, and the probability of a change in each output bit if any input bit is changed.
|
|
/// Source: https://github.com/h2database/h2database/blob/master/h2/src/test/org/h2/test/store/CalculateHashConstant.java
|
|
/// </summary>
|
|
/// <param name="x">Unsigned integer to hash</param>
|
|
/// <returns>The calculated hash value</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static uint Hash32(uint x)
|
|
{
|
|
x = ((x >> 16) ^ x) * 0x45d9f3b;
|
|
x = ((x >> 16) ^ x) * 0x45d9f3b;
|
|
x = (x >> 16) ^ x;
|
|
return x;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates a 32-bit non-zero hash using an unsigned integer seed
|
|
/// </summary>
|
|
/// <param name="seed">The unsigned integer to hash</param>
|
|
/// <returns>The calculated hash value</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static uint Hash32NonZero(uint seed)
|
|
{
|
|
var hash = Hash32(seed);
|
|
return hash == 0u ? largePrime : hash;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Based on splitmix64: http://xorshift.di.unimi.it/splitmix64.c
|
|
/// </summary>
|
|
/// <param name="x">64-bit value to hash</param>
|
|
/// <returns>The calculated hash value</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static ulong Hash64(ulong x)
|
|
{
|
|
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9ul;
|
|
x = (x ^ (x >> 27)) * 0x94d049bb133111ebul;
|
|
x ^= (x >> 31);
|
|
return x;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates new a new non-zero random state by deterministically hashing a base seed with an iteration index
|
|
/// </summary>
|
|
/// <param name="index">Usually the current scenario iteration or framesSinceInitialization</param>
|
|
/// <param name="baseSeed">The seed to be offset</param>
|
|
/// <returns>A new random state</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static uint IterateSeed(uint index, uint baseSeed)
|
|
{
|
|
var state = (uint)Hash64(((ulong)index << 32) | baseSeed);
|
|
return state == 0u ? largePrime : state;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Source: https://www.johndcook.com/blog/csharp_phi/
|
|
/// </summary>
|
|
static float NormalCdf(float x)
|
|
{
|
|
const float a1 = 0.254829592f;
|
|
const float a2 = -0.284496736f;
|
|
const float a3 = 1.421413741f;
|
|
const float a4 = -1.453152027f;
|
|
const float a5 = 1.061405429f;
|
|
const float p = 0.3275911f;
|
|
|
|
var sign = 1;
|
|
if (x < 0)
|
|
sign = -1;
|
|
x = math.abs(x) / math.sqrt(2.0f);
|
|
|
|
var t = 1.0f / (1.0f + p*x);
|
|
var y = 1.0f - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t * math.exp(-x*x);
|
|
|
|
return 0.5f * (1.0f + sign*y);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Source: https://www.johndcook.com/blog/csharp_phi_inverse/
|
|
/// </summary>
|
|
static float RationalApproximation(float t)
|
|
{
|
|
const float c0 = 2.515517f;
|
|
const float c1 = 0.802853f;
|
|
const float c2 = 0.010328f;
|
|
const float d0 = 1.432788f;
|
|
const float d1 = 0.189269f;
|
|
const float d2 = 0.001308f;
|
|
return t - ((c2*t + c1)*t + c0) / (((d2*t + d1)*t + d0)*t + 1.0f);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Source: https://www.johndcook.com/blog/csharp_phi_inverse/
|
|
/// Note: generates NaN values for values 0 and 1
|
|
/// </summary>
|
|
/// <param name="uniformSample">A uniform sample value between the range (0, 1)</param>
|
|
static float NormalCdfInverse(float uniformSample)
|
|
{
|
|
return uniformSample < 0.5f
|
|
? -RationalApproximation(math.sqrt(-2.0f * math.log(uniformSample)))
|
|
: RationalApproximation(math.sqrt(-2.0f * math.log(1.0f - uniformSample)));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates samples from a truncated normal distribution.
|
|
/// Further reading about this distribution can be found here:
|
|
/// https://en.wikipedia.org/wiki/Truncated_normal_distribution
|
|
/// </summary>
|
|
/// <param name="uniformSample">A sample value between 0 and 1 generated from a uniform distribution</param>
|
|
/// <param name="min">The minimum possible value to generate</param>
|
|
/// <param name="max">The maximum possible value to generate</param>
|
|
/// <param name="mean">The mean of the normal distribution</param>
|
|
/// <param name="stdDev">The standard deviation of the normal distribution</param>
|
|
/// <returns>A value sampled from a truncated normal distribution</returns>
|
|
/// <exception cref="ArgumentException"></exception>
|
|
public static float TruncatedNormalSample(float uniformSample, float min, float max, float mean, float stdDev)
|
|
{
|
|
if (min > max)
|
|
throw new ArgumentException("Invalid range");
|
|
|
|
if (uniformSample == 0f)
|
|
return min;
|
|
if (uniformSample == 1f)
|
|
return max;
|
|
if (stdDev == 0f)
|
|
return math.clamp(mean, min, max);
|
|
|
|
var a = NormalCdf((min - mean) / stdDev);
|
|
var b = NormalCdf((max - mean) / stdDev);
|
|
var c = math.lerp(a, b, uniformSample);
|
|
|
|
if (c == 0f)
|
|
return max;
|
|
if (c == 1f)
|
|
return min;
|
|
|
|
var stdTruncNorm = NormalCdfInverse(c);
|
|
return stdTruncNorm * stdDev + mean;
|
|
}
|
|
}
|
|
}
|