您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

294 行
12 KiB

using System;
using System.Collections.Generic;
using System.Diagnostics.CodeAnalysis;
using System.IO;
using System.Linq;
using JetBrains.Annotations;
using Unity.Collections;
using Unity.Simulation;
using UnityEngine.Experimental.Rendering;
using UnityEngine.Profiling;
using UnityEngine.UI;
#if HDRP_PRESENT
using UnityEngine.Rendering.HighDefinition;
#endif
namespace UnityEngine.Perception.GroundTruth
{
/// <summary>
/// Labeler which generates a semantic segmentation image each frame. Each object is rendered to the semantic segmentation
/// image using the color associated with it based on the given <see cref="SemanticSegmentationLabelConfig"/>.
/// Semantic segmentation images are saved to the dataset in PNG format.
///
/// Only one SemanticSegmentationLabeler can render at once across all cameras.
/// </summary>
[Serializable]
public sealed class SemanticSegmentationLabeler : CameraLabeler
{
const string k_SemanticSegmentationDirectory = "SemanticSegmentation";
const string k_SegmentationFilePrefix = "segmentation_";
/// <summary>
/// The id to associate with semantic segmentation annotations in the dataset.
/// </summary>
[Tooltip("The id to associate with semantic segmentation annotations in the dataset.")]
public string annotationId = "12F94D8D-5425-4DEB-9B21-5E53AD957D66";
/// <summary>
/// The SemanticSegmentationLabelConfig which maps labels to pixel values.
/// </summary>
public SemanticSegmentationLabelConfig labelConfig;
/// <summary>
/// Event information for <see cref="SemanticSegmentationLabeler.imageReadback"/>
/// </summary>
public struct ImageReadbackEventArgs
{
/// <summary>
/// The <see cref="Time.frameCount"/> on which the image was rendered. This may be multiple frames in the past.
/// </summary>
public int frameCount;
/// <summary>
/// Color pixel data.
/// </summary>
public NativeArray<Color32> data;
/// <summary>
/// The source image texture.
/// </summary>
public RenderTexture sourceTexture;
}
/// <summary>
/// Event which is called each frame a semantic segmentation image is read back from the GPU.
/// </summary>
public event Action<ImageReadbackEventArgs> imageReadback;
/// <summary>
/// The RenderTexture on which semantic segmentation images are drawn. Will be resized on startup to match
/// the camera resolution.
/// </summary>
public RenderTexture targetTexture => m_TargetTextureOverride;
[Tooltip("(Optional) The RenderTexture on which semantic segmentation images will be drawn. Will be reformatted on startup.")]
[SerializeField]
RenderTexture m_TargetTextureOverride;
AnnotationDefinition m_SemanticSegmentationAnnotationDefinition;
RenderTextureReader<Color32> m_SemanticSegmentationTextureReader;
#if HDRP_PRESENT
SemanticSegmentationPass m_SemanticSegmentationPass;
#endif
Dictionary<int, AsyncAnnotation> m_AsyncAnnotations;
private float defaultSegmentTransparency = 0.8f;
private float defaultBackgroundTransparency = 0.0f;
/// <summary>
/// Creates a new SemanticSegmentationLabeler. Be sure to assign <see cref="labelConfig"/> before adding to a <see cref="PerceptionCamera"/>.
/// </summary>
public SemanticSegmentationLabeler() { }
/// <summary>
/// Creates a new SemanticSegmentationLabeler with the given <see cref="SemanticSegmentationLabelConfig"/>.
/// </summary>
/// <param name="labelConfig">The label config associating labels with colors.</param>
/// <param name="targetTextureOverride">Override the target texture of the labeler. Will be reformatted on startup.</param>
public SemanticSegmentationLabeler(SemanticSegmentationLabelConfig labelConfig, RenderTexture targetTextureOverride = null)
{
this.labelConfig = labelConfig;
this.m_TargetTextureOverride = targetTextureOverride;
}
[SuppressMessage("ReSharper", "InconsistentNaming")]
struct SemanticSegmentationSpec
{
[UsedImplicitly]
public string label_name;
[UsedImplicitly]
public Color pixel_value;
}
struct AsyncSemanticSegmentationWrite
{
public NativeArray<Color32> data;
public int width;
public int height;
public string path;
}
int camWidth = 0;
int camHeight = 0;
private GameObject segVisual = null;
private Image segImage = null;
/// <inheritdoc/>
protected override bool supportsVisualization => true;
/// <inheritdoc/>
protected override void Setup()
{
var myCamera = perceptionCamera.GetComponent<Camera>();
camWidth = myCamera.pixelWidth;
camHeight = myCamera.pixelHeight;
if (labelConfig == null)
{
throw new InvalidOperationException(
"SemanticSegmentationLabeler's LabelConfig must be assigned");
}
m_AsyncAnnotations = new Dictionary<int, AsyncAnnotation>();
var renderTextureDescriptor = new RenderTextureDescriptor(camWidth, camHeight, GraphicsFormat.R8G8B8A8_UNorm, 8);
if (targetTexture != null)
targetTexture.descriptor = renderTextureDescriptor;
else
m_TargetTextureOverride = new RenderTexture(renderTextureDescriptor);
targetTexture.Create();
targetTexture.name = "Labeling";
#if HDRP_PRESENT
var gameObject = perceptionCamera.gameObject;
var customPassVolume = gameObject.GetComponent<CustomPassVolume>() ?? gameObject.AddComponent<CustomPassVolume>();
customPassVolume.injectionPoint = CustomPassInjectionPoint.BeforeRendering;
customPassVolume.isGlobal = true;
m_SemanticSegmentationPass = new SemanticSegmentationPass(myCamera, targetTexture, labelConfig)
{
name = "Labeling Pass"
};
customPassVolume.customPasses.Add(m_SemanticSegmentationPass);
#endif
#if URP_PRESENT
perceptionCamera.AddScriptableRenderPass(new SemanticSegmentationUrpPass(myCamera, targetTexture, labelConfig));
#endif
var specs = labelConfig.labelEntries.Select((l) => new SemanticSegmentationSpec()
{
label_name = l.label,
pixel_value = l.color
}).ToArray();
m_SemanticSegmentationAnnotationDefinition = DatasetCapture.RegisterAnnotationDefinition(
"semantic segmentation",
specs,
"pixel-wise semantic segmentation label",
"PNG",
id: Guid.Parse(annotationId));
m_SemanticSegmentationTextureReader = new RenderTextureReader<Color32>(targetTexture, myCamera,
(frameCount, data, tex) => OnSemanticSegmentationImageRead(frameCount, data));
visualizationEnabled = supportsVisualization;
}
void OnSemanticSegmentationImageRead(int frameCount, NativeArray<Color32> data)
{
if (!m_AsyncAnnotations.TryGetValue(frameCount, out var annotation))
return;
var datasetRelativePath = Path.Combine(k_SemanticSegmentationDirectory, k_SegmentationFilePrefix) + frameCount + ".png";
var localPath = Path.Combine(Manager.Instance.GetDirectoryFor(k_SemanticSegmentationDirectory), k_SegmentationFilePrefix) + frameCount + ".png";
annotation.ReportFile(datasetRelativePath);
var asyncRequest = Manager.Instance.CreateRequest<AsyncRequest<AsyncSemanticSegmentationWrite>>();
if (visualizationEnabled && perceptionCamera.visualizationEnabled)
VisualizeSegmentationTexture(data, targetTexture);
imageReadback?.Invoke(new ImageReadbackEventArgs
{
data = data,
frameCount = frameCount,
sourceTexture = targetTexture
});
asyncRequest.data = new AsyncSemanticSegmentationWrite
{
data = new NativeArray<Color32>(data, Allocator.TempJob),
width = targetTexture.width,
height = targetTexture.height,
path = localPath
};
asyncRequest.Start((r) =>
{
Profiler.BeginSample("Encode");
var pngBytes = ImageConversion.EncodeArrayToPNG(r.data.data.ToArray(), GraphicsFormat.R8G8B8A8_UNorm, (uint)r.data.width, (uint)r.data.height);
Profiler.EndSample();
Profiler.BeginSample("WritePng");
File.WriteAllBytes(r.data.path, pngBytes);
Manager.Instance.ConsumerFileProduced(r.data.path);
Profiler.EndSample();
r.data.data.Dispose();
return AsyncRequest.Result.Completed;
});
}
/// <inheritdoc/>
protected override void OnBeginRendering()
{
m_AsyncAnnotations[Time.frameCount] = perceptionCamera.SensorHandle.ReportAnnotationAsync(m_SemanticSegmentationAnnotationDefinition);
}
/// <inheritdoc/>
protected override void Cleanup()
{
m_SemanticSegmentationTextureReader?.WaitForAllImages();
m_SemanticSegmentationTextureReader?.Dispose();
m_SemanticSegmentationTextureReader = null;
if (m_TargetTextureOverride != null)
m_TargetTextureOverride.Release();
m_TargetTextureOverride = null;
}
/// <inheritdoc/>
protected override void PopulateVisualizationPanel(ControlPanel panel)
{
panel.AddToggleControl("Segmentation Information", enabled => { visualizationEnabled = enabled; });
defaultSegmentTransparency = 0.8f;
defaultBackgroundTransparency = 0.0f;
panel.AddSliderControl("Object Alpha", defaultSegmentTransparency, val => {
if (segImage != null) segImage.material.SetFloat("_SegmentTransparency", val);
});
panel.AddSliderControl("Background Alpha", defaultBackgroundTransparency, val => {
if (segImage != null) segImage.material.SetFloat("_BackTransparency", val);
});
segVisual = GameObject.Instantiate(Resources.Load<GameObject>("SegmentTexture"));
segImage = segVisual.GetComponent<Image>();
segImage.material.SetFloat("_SegmentTransparency", defaultSegmentTransparency);
segImage.material.SetFloat("_BackTransparency", defaultBackgroundTransparency);
RectTransform rt = segVisual.transform as RectTransform;
rt.SetSizeWithCurrentAnchors(RectTransform.Axis.Horizontal, camWidth);
rt.SetSizeWithCurrentAnchors(RectTransform.Axis.Vertical, camHeight);
canvas.AddComponent(segVisual, setAsLowestElement: true);
}
void VisualizeSegmentationTexture(NativeArray<Color32> data, RenderTexture texture)
{
var cpuTexture = new Texture2D(texture.width, texture.height, GraphicsFormat.R8G8B8A8_UNorm, TextureCreationFlags.None);
cpuTexture.LoadRawTextureData(data);
cpuTexture.Apply();
segImage.material.SetTexture("_BaseMap", cpuTexture);
}
/// <inheritdoc/>
override protected void OnVisualizerActiveStateChanged(bool enabled)
{
if (segVisual != null)
segVisual.SetActive(enabled);
}
}
}