# Perception
The Perception package provides a toolkit for generating large-scale datasets for perception-based machine learning training and validation. It is focused on a handful of camera-based use cases for now and will ultimately expand to other forms of sensors and machine learning tasks.
![ReleaseBadge](https://badge-proxy.cds.internal.unity3d.com/5ab9a162-9dd0-4ba1-ba41-cf25378a927a)
[![license badge](https://img.shields.io/badge/license-Apache--2.0-green.svg)](LICENSE.md)
> com.unity.perception is in active development. Its features and API are subject to significant change as development progresses.
## Documentation
[Quick Installation Instructions](com.unity.perception/Documentation~/SetupSteps.md)
[Perception Tutorial](com.unity.perception/Documentation~/Tutorial/TUTORIAL.md): Detailed instructions covering all the important steps from installing Unity Editor, to creating your first Perception project, building a randomized Scene, and generating large-scale synthetic datasets by leveraging the power of Unity Simulation.
[Perception Manual](com.unity.perception/Documentation~/index.md): Sample projects and documentation of the SDK.
## Local development
The repository includes two projects for local development in `TestProjects` folder, one set up for HDRP and the other for URP.
### Suggested IDE Setup
For closest standards conformity and best experience overall, JetBrains Rider or Visual Studio w/ JetBrains Resharper are suggested. For optimal experience, perform the following additional steps:
* To allow navigating to code in all packages included in your project, in your Unity Editor, navigate to `Edit -> Preferences... -> External Tools` and check `Generate all .csproj files.`
## License
* [License](com.unity.perception/LICENSE.md)
## Citation
If you find this package useful, consider citing it using:
```
@misc{com.unity.perception2020,
title={Unity {P}erception Package},
author={{Unity Technologies}},
howpublished={\url{https://github.com/Unity-Technologies/com.unity.perception}},
year={2020}
}
```