using System; using Unity.Burst; using Unity.Collections; using Unity.Jobs; using Unity.Mathematics; using UnityEngine.Scripting.APIUpdating; namespace UnityEngine.Perception.Randomization.Randomizers.Utilities { /// /// Utility for generating lists of poisson disk sampled points /// public static class PoissonDiskSampling { const int k_DefaultSamplingResolution = 30; /// /// Returns a list of poisson disc sampled points for a given area and density /// /// Width of the sampling area /// Height of the sampling area /// The minimum distance required between each sampled point /// The random seed used to initialize the algorithm state /// The number of potential points sampled around every valid point /// The list of generated poisson points public static NativeList GenerateSamples( float width, float height, float minimumRadius, uint seed = 12345, int samplingResolution = k_DefaultSamplingResolution) { if (width < 0) throw new ArgumentException($"Width {width} cannot be negative"); if (height < 0) throw new ArgumentException($"Height {height} cannot be negative"); if (minimumRadius < 0) throw new ArgumentException($"MinimumRadius {minimumRadius} cannot be negative"); if (seed == 0) throw new ArgumentException("Random seed cannot be 0"); if (samplingResolution <= 0) throw new ArgumentException($"SamplingAttempts {samplingResolution} cannot be <= 0"); var samples = new NativeList(Allocator.TempJob); new SampleJob { width = width, height = height, minimumRadius = minimumRadius, seed = seed, samplingResolution = samplingResolution, samples = samples }.Schedule().Complete(); return samples; } [BurstCompile] struct SampleJob : IJob { public float width; public float height; public float minimumRadius; public uint seed; public int samplingResolution; public NativeList samples; public void Execute() { var newSamples = Sample(width, height, minimumRadius, seed, samplingResolution, Allocator.Temp); samples.AddRange(newSamples); newSamples.Dispose(); } } // Algorithm sourced from Robert Bridson's paper "Fast Poisson Disk Sampling in Arbitrary Dimensions" // https://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph07-poissondisk.pdf /// /// Returns a list of poisson disc sampled points for a given area and density /// /// Width of the sampling area /// Height of the sampling area /// The minimum distance required between each sampled point /// The random seed used to initialize the algorithm state /// The number of potential points sampled around every valid point /// The allocator type of the generated native container /// The list of generated poisson points static NativeList Sample( float width, float height, float minimumRadius, uint seed, int samplingResolution, Allocator allocator) { var samples = new NativeList(allocator); // Calculate occupancy grid dimensions var random = new Unity.Mathematics.Random(seed); var cellSize = minimumRadius / math.sqrt(2); var rows = Mathf.FloorToInt(height / cellSize); var cols = Mathf.FloorToInt(width / cellSize); var gridSize = rows * cols; if (gridSize == 0) return samples; // Initialize a few constants var rSqr = minimumRadius * minimumRadius; var samplingArc = math.PI * 2 / samplingResolution; var halfSamplingArc = samplingArc / 2; // Initialize a hash array that maps a sample's grid position to it's index var gridToSampleIndex = new NativeArray(gridSize, Allocator.Temp); for (var i = 0; i < gridSize; i++) gridToSampleIndex[i] = -1; // This list will track all points that may still have space around them for generating new points var activePoints = new NativeList(Allocator.Temp); // Randomly place a seed point in a central location within the generation space to kick off the algorithm var firstPoint = new float2( random.NextFloat(0.4f, 0.6f) * width, random.NextFloat(0.4f, 0.6f) * height); samples.Add(firstPoint); var firstPointCol = Mathf.FloorToInt(firstPoint.x / cellSize); var firstPointRow = Mathf.FloorToInt(firstPoint.y / cellSize); gridToSampleIndex[firstPointCol + firstPointRow * cols] = 0; activePoints.Add(firstPoint); while (activePoints.Length > 0) { var randomIndex = random.NextInt(0, activePoints.Length); var activePoint = activePoints[randomIndex]; var nextPointFound = false; for (var i = 0; i < samplingResolution; i++) { var length = random.NextFloat(minimumRadius, minimumRadius * 2); var angle = samplingArc * i + random.NextFloat(-halfSamplingArc, halfSamplingArc); // Generate a new point within the circular placement region around the active point var newPoint = activePoint + new float2( math.cos(angle) * length, math.sin(angle) * length); var col = Mathf.FloorToInt(newPoint.x / cellSize); var row = Mathf.FloorToInt(newPoint.y / cellSize); if (row < 0 || row >= rows || col < 0 || col >= cols) continue; // Iterate over the 8 surrounding grid locations to check if the newly generated point is too close // to an existing point var tooCloseToAnotherPoint = false; for (var x = -2; x <= 2; x++) { if ((col + x) < 0 || (col + x) >= cols) continue; for (var y = -2; y <= 2; y++) { if ((row + y) < 0 || (row + y) >= rows) continue; var gridIndex = (col + x) + (row + y) * cols; if (gridToSampleIndex[gridIndex] < 0) continue; var distanceSqr = math.distancesq(samples[gridToSampleIndex[gridIndex]], newPoint); if (distanceSqr >= rSqr) continue; tooCloseToAnotherPoint = true; break; } } if (tooCloseToAnotherPoint) continue; // If the new point is accepted, add it to the occupancy grid and the list of generated samples nextPointFound = true; activePoints.Add(newPoint); samples.Add(newPoint); gridToSampleIndex[col + row * cols] = samples.Length - 1; } if (!nextPointFound) activePoints.RemoveAtSwapBack(randomIndex); } gridToSampleIndex.Dispose(); activePoints.Dispose(); return samples; } } }