using System;
using System.Runtime.CompilerServices;
using Unity.Collections;
using Unity.Mathematics;
namespace UnityEngine.Experimental.Perception.Randomization.Samplers
{
///
/// A set of utility functions for defining sampler interfaces
///
public static class SamplerUtility
{
///
/// A large prime number
///
public const uint largePrime = 0x202A96CF;
///
/// The number of samples to generate per job batch in an IJobParallelForBatch job
///
public const int samplingBatchSize = 64;
///
/// Returns the sampler's display name
///
/// The sampler type
/// The display name
public static string GetSamplerDisplayName(Type samplerType)
{
return samplerType.Name.Replace("Sampler", string.Empty);
}
///
/// Non-deterministically generates a non-zero random seed
///
/// A non-deterministically generated random seed
public static uint GenerateRandomSeed()
{
return (uint)Random.Range(1, uint.MaxValue);
}
///
/// Hashes using constants generated from a program that maximizes the avalanche effect, independence of
/// output bit changes, and the probability of a change in each output bit if any input bit is changed.
/// Source: https://github.com/h2database/h2database/blob/master/h2/src/test/org/h2/test/store/CalculateHashConstant.java
///
/// Unsigned integer to hash
/// The calculated hash value
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static uint Hash32(uint x)
{
x = ((x >> 16) ^ x) * 0x45d9f3b;
x = ((x >> 16) ^ x) * 0x45d9f3b;
x = (x >> 16) ^ x;
return x;
}
///
/// Generates a 32-bit non-zero hash using an unsigned integer seed
///
/// The unsigned integer to hash
/// The calculated hash value
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static uint Hash32NonZero(uint seed)
{
var hash = Hash32(seed);
return hash == 0u ? largePrime : hash;
}
///
/// Based on splitmix64: http://xorshift.di.unimi.it/splitmix64.c
///
/// 64-bit value to hash
/// The calculated hash value
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static ulong Hash64(ulong x)
{
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9ul;
x = (x ^ (x >> 27)) * 0x94d049bb133111ebul;
x ^= (x >> 31);
return x;
}
///
/// Generates new a new non-zero random state by deterministically hashing a base seed with an iteration index
///
/// Usually the current scenario iteration or framesSinceInitialization
/// The seed to be offset
/// A new random state
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static uint IterateSeed(uint index, uint baseSeed)
{
var state = (uint)Hash64(((ulong)index << 32) | baseSeed);
return state == 0u ? largePrime : state;
}
///
/// Source: https://www.johndcook.com/blog/csharp_phi/
///
static float NormalCdf(float x)
{
const float a1 = 0.254829592f;
const float a2 = -0.284496736f;
const float a3 = 1.421413741f;
const float a4 = -1.453152027f;
const float a5 = 1.061405429f;
const float p = 0.3275911f;
var sign = 1;
if (x < 0)
sign = -1;
x = math.abs(x) / math.sqrt(2.0f);
var t = 1.0f / (1.0f + p*x);
var y = 1.0f - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t * math.exp(-x*x);
return 0.5f * (1.0f + sign*y);
}
///
/// Source: https://www.johndcook.com/blog/csharp_phi_inverse/
///
static float RationalApproximation(float t)
{
const float c0 = 2.515517f;
const float c1 = 0.802853f;
const float c2 = 0.010328f;
const float d0 = 1.432788f;
const float d1 = 0.189269f;
const float d2 = 0.001308f;
return t - ((c2*t + c1)*t + c0) / (((d2*t + d1)*t + d0)*t + 1.0f);
}
///
/// Source: https://www.johndcook.com/blog/csharp_phi_inverse/
/// Note: generates NaN values for values 0 and 1
///
/// A uniform sample value between the range (0, 1)
static float NormalCdfInverse(float uniformSample)
{
return uniformSample < 0.5f
? -RationalApproximation(math.sqrt(-2.0f * math.log(uniformSample)))
: RationalApproximation(math.sqrt(-2.0f * math.log(1.0f - uniformSample)));
}
///
/// Generates samples from a truncated normal distribution.
/// Further reading about this distribution can be found here:
/// https://en.wikipedia.org/wiki/Truncated_normal_distribution
///
/// A sample value between 0 and 1 generated from a uniform distribution
/// The minimum possible value to generate
/// The maximum possible value to generate
/// The mean of the normal distribution
/// The standard deviation of the normal distribution
/// A value sampled from a truncated normal distribution
///
public static float TruncatedNormalSample(float uniformSample, float min, float max, float mean, float stdDev)
{
if (min > max)
throw new ArgumentException("Invalid range");
if (uniformSample == 0f)
return min;
if (uniformSample == 1f)
return max;
if (stdDev == 0f)
return math.clamp(mean, min, max);
var a = NormalCdf((min - mean) / stdDev);
var b = NormalCdf((max - mean) / stdDev);
var c = math.lerp(a, b, uniformSample);
if (c == 0f)
return max;
if (c == 1f)
return min;
var stdTruncNorm = NormalCdfInverse(c);
return stdTruncNorm * stdDev + mean;
}
///
/// Generate samples from probability distribution derived from a given AnimationCurve.
///
/// Numerical integration representing the AnimationCurve
/// A sample value between 0 and 1 generated from a uniform distribution
/// The interval at which the original AnimationCurve was sampled in order to produce integratedCurve
/// The time attribute of the first key of the original AnimationCurve
/// The time attribute of the last key of the original AnimationCurve
/// The generated sample
public static float AnimationCurveSample(float[] integratedCurve, float uniformSample, float interval, float startTime, float endTime)
{
var scaledSample = uniformSample * integratedCurve[integratedCurve.Length - 1];
for (var i = 0; i < integratedCurve.Length - 1; i++)
{
if (scaledSample > integratedCurve[i] && scaledSample < integratedCurve[i + 1])
{
var valueDifference = integratedCurve[i + 1] - integratedCurve[i];
var upperWeight = (scaledSample - integratedCurve[i]) / valueDifference;
var lowerWeight = 1 - upperWeight;
var matchingIndex = i * lowerWeight + (i + 1) * upperWeight;
var matchingTimeStamp = startTime + matchingIndex * interval;
return matchingTimeStamp;
}
}
throw new ArithmeticException("Could not find matching timestamp.");
}
///
/// Numerically integrate a given AnimationCurve using the specified number of samples.
/// Based on https://en.wikipedia.org/wiki/Numerical_integration and http://blog.s-schoener.com/2018-05-05-animation-curves/
/// Using the trapezoidal rule for numerical interpolation
///
/// The array to fill with integrated values
/// The animation curve to sample integrate
///
public static void IntegrateCurve(float[] array, AnimationCurve curve)
{
if (curve.length == 0)
{
throw new ArgumentException("The provided Animation Curve includes no keys.");
}
var startTime = curve.keys[0].time;
var endTime = curve.keys[curve.length - 1].time;
var interval = (endTime - startTime) / (array.Length - 1);
array[0] = 0;
var previousValue = curve.Evaluate(startTime);
for (var i = 1; i < array.Length; i++)
{
if (curve.length == 1)
{
array[i] = previousValue;
}
else
{
var currentTime = startTime + i * interval;
var currentValue = curve.Evaluate(currentTime);
array[i] = array[i-1] + (previousValue + currentValue) * interval / 2;
previousValue = currentValue;
}
}
}
}
}