using System;
using System.Collections.Generic;
using UnityEngine.Perception.Randomization.Samplers;
namespace UnityEngine.Perception.Randomization.Parameters
{
///
/// Generates samples by choosing one option from a list of choices
///
/// The sample type of the categorical parameter
[Serializable]
public abstract class CategoricalParameter : CategoricalParameterBase
{
[SerializeField] internal bool uniform;
[SerializeReference] ISampler m_Sampler = new UniformSampler(0f, 1f);
[SerializeField] List m_Categories = new List();
float[] m_NormalizedProbabilities;
///
/// Returns a list containing the samplers attached to this parameter
///
public override ISampler[] samplers => new [] { m_Sampler };
///
/// The sample type generated by this parameter
///
public sealed override Type sampleType => typeof(T);
///
/// Returns the category stored at the specified index
///
/// The index of the category to lookup
/// The category stored at the specified index
public T GetCategory(int index) => m_Categories[index];
///
/// Returns the probability value stored at the specified index
///
/// The index of the probability value to lookup
/// The probability value stored at the specified index
public float GetProbability(int index) => probabilities[index];
///
/// Constructs a new categorical parameter
///
protected CategoricalParameter() { }
///
/// Create a new categorical parameter from a list of categories with uniform probabilities
///
/// List of categories
///
protected CategoricalParameter(IEnumerable categoricalOptions)
{
if (categories.Count == 0)
throw new ArgumentException("List of options is empty");
uniform = true;
foreach (var option in categoricalOptions)
AddOption(option, 1f);
}
///
/// Creates a new categorical parameter from a list of categories and their associated probabilities
///
/// List of categories and their associated probabilities
///
protected CategoricalParameter(IEnumerable<(T, float)> categoricalOptions)
{
if (categories.Count == 0)
throw new ArgumentException("List of options is empty");
foreach (var (category, probability) in categoricalOptions)
AddOption(category, probability);
NormalizeProbabilities();
}
internal override void AddOption()
{
m_Categories.Add(default);
probabilities.Add(0f);
}
internal void AddOption(T option, float probability)
{
m_Categories.Add(option);
probabilities.Add(probability);
}
internal override void RemoveOption(int index)
{
m_Categories.RemoveAt(index);
probabilities.RemoveAt(index);
}
internal override void ClearOptions()
{
m_Categories.Clear();
probabilities.Clear();
}
///
/// Returns a list of the potential categories this parameter can generate
///
public IReadOnlyList<(T, float)> categories
{
get
{
var catOptions = new List<(T, float)>(m_Categories.Count);
for (var i = 0; i < catOptions.Count; i++)
catOptions.Add((m_Categories[i], probabilities[i]));
return catOptions;
}
}
///
/// Validates the categorical probabilities assigned to this parameter
///
///
internal override void Validate()
{
base.Validate();
if (!uniform)
{
if (probabilities.Count != m_Categories.Count)
throw new ParameterValidationException("Number of options must be equal to the number of probabilities");
NormalizeProbabilities();
}
}
internal void NormalizeProbabilities()
{
var totalProbability = 0f;
for (var i = 0; i < probabilities.Count; i++)
{
var probability = probabilities[i];
if (probability < 0f)
throw new ParameterValidationException($"Found negative probability at index {i}");
totalProbability += probability;
}
if (totalProbability <= 0f)
throw new ParameterValidationException("Total probability must be greater than 0");
var sum = 0f;
m_NormalizedProbabilities = new float[probabilities.Count];
for (var i = 0; i < probabilities.Count; i++)
{
sum += probabilities[i] / totalProbability;
m_NormalizedProbabilities[i] = sum;
}
}
int BinarySearch(float key) {
var minNum = 0;
var maxNum = m_NormalizedProbabilities.Length - 1;
while (minNum <= maxNum) {
var mid = (minNum + maxNum) / 2;
// ReSharper disable once CompareOfFloatsByEqualityOperator
if (key == m_NormalizedProbabilities[mid]) {
return ++mid;
}
if (key < m_NormalizedProbabilities[mid]) {
maxNum = mid - 1;
}
else {
minNum = mid + 1;
}
}
return minNum;
}
///
/// Generates a sample
///
/// The generated sample
public T Sample()
{
var randomValue = m_Sampler.Sample();
return uniform
? m_Categories[(int)(randomValue * m_Categories.Count)]
: m_Categories[BinarySearch(randomValue)];
}
internal sealed override void ApplyToTarget(int seedOffset)
{
if (!hasTarget)
return;
target.ApplyValueToTarget(Sample());
}
}
}