您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

256 行
8.7 KiB

using System;
using Unity.Collections.LowLevel.Unsafe;
using UnityEngine;
using UnityEngine.UI;
using UnityEngine.XR.ARFoundation;
using UnityEngine.XR.ARSubsystems;
/// <summary>
/// This component tests getting the latest camera image
/// and converting it to RGBA format. If successful,
/// it displays the image on the screen as a RawImage
/// and also displays information about the image.
///
/// This is useful for computer vision applications where
/// you need to access the raw pixels from camera image
/// on the CPU.
///
/// This is different from the ARCameraBackground component, which
/// efficiently displays the camera image on the screen. If you
/// just want to blit the camera texture to the screen, use
/// the ARCameraBackground, or use Graphics.Blit to create
/// a GPU-friendly RenderTexture.
///
/// In this example, we get the camera image data on the CPU,
/// convert it to an RGBA format, then display it on the screen
/// as a RawImage texture to demonstrate it is working.
/// This is done as an example; do not use this technique simply
/// to render the camera image on screen.
/// </summary>
public class CpuImageSample : MonoBehaviour
{
[SerializeField]
[Tooltip("The ARCameraManager which will produce frame events.")]
ARCameraManager m_CameraManager;
/// <summary>
/// Get or set the <c>ARCameraManager</c>.
/// </summary>
public ARCameraManager cameraManager
{
get => m_CameraManager;
set => m_CameraManager = value;
}
[SerializeField]
RawImage m_RawCameraImage;
/// <summary>
/// The UI RawImage used to display the image on screen.
/// </summary>
public RawImage rawCameraImage
{
get => m_RawCameraImage;
set => m_RawCameraImage = value;
}
[SerializeField]
[Tooltip("The AROcclusionManager which will produce human depth and stencil textures.")]
AROcclusionManager m_OcclusionManager;
public AROcclusionManager occlusionManager
{
get => m_OcclusionManager;
set => m_OcclusionManager = value;
}
[SerializeField]
RawImage m_RawHumanDepthImage;
/// <summary>
/// The UI RawImage used to display the image on screen.
/// </summary>
public RawImage rawHumanDepthImage
{
get => m_RawHumanDepthImage;
set => m_RawHumanDepthImage = value;
}
[SerializeField]
RawImage m_RawHumanStencilImage;
/// <summary>
/// The UI RawImage used to display the image on screen.
/// </summary>
public RawImage rawHumanStencilImage
{
get => m_RawHumanStencilImage;
set => m_RawHumanStencilImage = value;
}
[SerializeField]
Text m_ImageInfo;
/// <summary>
/// The UI Text used to display information about the image on screen.
/// </summary>
public Text imageInfo
{
get => m_ImageInfo;
set => m_ImageInfo = value;
}
void OnEnable()
{
if (m_CameraManager != null)
{
m_CameraManager.frameReceived += OnCameraFrameReceived;
}
}
void OnDisable()
{
if (m_CameraManager != null)
{
m_CameraManager.frameReceived -= OnCameraFrameReceived;
}
}
unsafe void UpdateCameraImage()
{
// Attempt to get the latest camera image. If this method succeeds,
// it acquires a native resource that must be disposed (see below).
if (!cameraManager.TryAcquireLatestCpuImage(out XRCpuImage image))
{
return;
}
// Display some information about the camera image
m_ImageInfo.text = string.Format(
"Image info:\n\twidth: {0}\n\theight: {1}\n\tplaneCount: {2}\n\ttimestamp: {3}\n\tformat: {4}",
image.width, image.height, image.planeCount, image.timestamp, image.format);
// Once we have a valid XRCpuImage, we can access the individual image "planes"
// (the separate channels in the image). XRCpuImage.GetPlane provides
// low-overhead access to this data. This could then be passed to a
// computer vision algorithm. Here, we will convert the camera image
// to an RGBA texture and draw it on the screen.
// Choose an RGBA format.
// See XRCpuImage.FormatSupported for a complete list of supported formats.
var format = TextureFormat.RGBA32;
if (m_CameraTexture == null || m_CameraTexture.width != image.width || m_CameraTexture.height != image.height)
{
m_CameraTexture = new Texture2D(image.width, image.height, format, false);
}
// Convert the image to format, flipping the image across the Y axis.
// We can also get a sub rectangle, but we'll get the full image here.
var conversionParams = new XRCpuImage.ConversionParams(image, format, XRCpuImage.Transformation.MirrorY);
// Texture2D allows us write directly to the raw texture data
// This allows us to do the conversion in-place without making any copies.
var rawTextureData = m_CameraTexture.GetRawTextureData<byte>();
try
{
image.Convert(conversionParams, new IntPtr(rawTextureData.GetUnsafePtr()), rawTextureData.Length);
}
finally
{
// We must dispose of the XRCpuImage after we're finished
// with it to avoid leaking native resources.
image.Dispose();
}
// Apply the updated texture data to our texture
m_CameraTexture.Apply();
// Set the RawImage's texture so we can visualize it.
m_RawCameraImage.texture = m_CameraTexture;
}
void UpdateHumanDepthImage()
{
if (m_RawHumanDepthImage == null)
return;
// Attempt to get the latest human depth image. If this method succeeds,
// it acquires a native resource that must be disposed (see below).
if (occlusionManager && occlusionManager.TryAcquireHumanDepthCpuImage(out XRCpuImage image))
{
using (image)
{
UpdateRawImage(m_RawHumanDepthImage, image);
}
}
else
{
m_RawHumanDepthImage.enabled = false;
}
}
void UpdateHumanStencilImage()
{
if (m_RawHumanStencilImage == null)
return;
// Attempt to get the latest human stencil image. If this method succeeds,
// it acquires a native resource that must be disposed (see below).
if (occlusionManager && occlusionManager.TryAcquireHumanStencilCpuImage(out XRCpuImage image))
{
using (image)
{
UpdateRawImage(m_RawHumanStencilImage, image);
}
}
else
{
m_RawHumanStencilImage.enabled = false;
}
}
static void UpdateRawImage(RawImage rawImage, XRCpuImage cpuImage)
{
// Get the texture associated with the UI.RawImage that we wish to display on screen.
var texture = rawImage.texture as Texture2D;
// If the texture hasn't yet been created, or if its dimensions have changed, (re)create the texture.
// Note: Although texture dimensions do not normally change frame-to-frame, they can change in response to
// a change in the camera resolution (for camera images) or changes to the quality of the human depth
// and human stencil buffers.
if (texture == null || texture.width != cpuImage.width || texture.height != cpuImage.height)
{
texture = new Texture2D(cpuImage.width, cpuImage.height, cpuImage.format.AsTextureFormat(), false);
rawImage.texture = texture;
}
// For display, we need to mirror about the vertical access.
var conversionParams = new XRCpuImage.ConversionParams(cpuImage, cpuImage.format.AsTextureFormat(), XRCpuImage.Transformation.MirrorY);
// Get the Texture2D's underlying pixel buffer.
var rawTextureData = texture.GetRawTextureData<byte>();
// Make sure the destination buffer is large enough to hold the converted data (they should be the same size)
Debug.Assert(rawTextureData.Length == cpuImage.GetConvertedDataSize(conversionParams.outputDimensions, conversionParams.outputFormat),
"The Texture2D is not the same size as the converted data.");
// Perform the conversion.
cpuImage.Convert(conversionParams, rawTextureData);
// "Apply" the new pixel data to the Texture2D.
texture.Apply();
// Make sure it's enabled.
rawImage.enabled = true;
}
void OnCameraFrameReceived(ARCameraFrameEventArgs eventArgs)
{
UpdateCameraImage();
UpdateHumanDepthImage();
UpdateHumanStencilImage();
}
Texture2D m_CameraTexture;
}