using System.Collections.Generic;
using UnityEngine;
using UnityEngine.XR.ARFoundation;
///
/// This plane visualizer demonstrates the use of a feathering effect
/// at the edge of the detected plane, which reduces the visual impression
/// of a hard edge.
///
[RequireComponent(typeof(ARPlaneMeshVisualizer), typeof(MeshRenderer), typeof(ARPlane))]
public class ARFeatheredPlaneMeshVisualizer : MonoBehaviour
{
[Tooltip("The width of the texture feathering (in world units).")]
[SerializeField]
float m_FeatheringWidth = 0.2f;
///
/// The width of the texture feathering (in world units).
///
public float featheringWidth
{
get { return m_FeatheringWidth; }
set { m_FeatheringWidth = value; }
}
void Awake()
{
m_PlaneMeshVisualizer = GetComponent();
m_FeatheredPlaneMaterial = GetComponent().material;
}
void OnEnable()
{
m_PlaneMeshVisualizer.meshUpdated += ARPlaneMeshVisualizer_meshUpdated;
}
void OnDisable()
{
m_PlaneMeshVisualizer.meshUpdated -= ARPlaneMeshVisualizer_meshUpdated;
}
void ARPlaneMeshVisualizer_meshUpdated(ARPlaneMeshVisualizer planeMeshVisualizer)
{
GenerateBoundaryUVs(planeMeshVisualizer.mesh);
}
///
/// Generate UV2s to mark the boundary vertices and feathering UV coords.
///
///
/// The ARPlaneMeshVisualizer has a meshUpdated event that can be used to modify the generated
/// mesh. In this case we'll add UV2s to mark the boundary vertices.
/// This technique avoids having to generate extra vertices for the boundary. It works best when the plane is
/// is fairly uniform.
///
/// The Mesh generated by ARPlaneMeshVisualizer
void GenerateBoundaryUVs(Mesh mesh)
{
int vertexCount = mesh.vertexCount;
// Reuse the list of UVs
s_FeatheringUVs.Clear();
if (s_FeatheringUVs.Capacity < vertexCount) { s_FeatheringUVs.Capacity = vertexCount; }
mesh.GetVertices(s_Vertices);
Vector3 centerInPlaneSpace = s_Vertices[s_Vertices.Count - 1];
Vector3 uv = new Vector3(0, 0, 0);
float shortestUVMapping = float.MaxValue;
// Assume the last vertex is the center vertex.
for (int i = 0; i < vertexCount - 1; i++)
{
float vertexDist = Vector3.Distance(s_Vertices[i], centerInPlaneSpace);
// Remap the UV so that a UV of "1" marks the feathering boudary.
// The ratio of featherBoundaryDistance/edgeDistance is the same as featherUV/edgeUV.
// Rearrange to get the edge UV.
float uvMapping = vertexDist / Mathf.Max(vertexDist - featheringWidth, 0.001f);
uv.x = uvMapping;
// All the UV mappings will be different. In the shader we need to know the UV value we need to fade out by.
// Choose the shortest UV to guarentee we fade out before the border.
// This means the feathering widths will be slightly different, we again rely on a fairly uniform plane.
if (shortestUVMapping > uvMapping) { shortestUVMapping = uvMapping; }
s_FeatheringUVs.Add(uv);
}
m_FeatheredPlaneMaterial.SetFloat("_ShortestUVMapping", shortestUVMapping);
// Add the center vertex UV
uv.Set(0, 0, 0);
s_FeatheringUVs.Add(uv);
mesh.SetUVs(1, s_FeatheringUVs);
mesh.UploadMeshData(false);
}
static List s_FeatheringUVs = new List();
static List s_Vertices = new List();
ARPlaneMeshVisualizer m_PlaneMeshVisualizer;
Material m_FeatheredPlaneMaterial;
}