
Unity跨平台移植分享

Dafu Lei
Senior Solution Engineer, Unity
dafu.lei@unity3d.com

Agenda

●跨平台问题及通用解决方法

●Unity目前已有的加速方案

●单个平台移植的基本流程

●Unity引擎相关的优化

●总结

Multi-platform development is critical

“Author once, deploy everywhere.”

The most successful games are multi-platform, and increasingly also cross-play.

It’s becoming the obvious choice for more studios.

But there are major pain points for users.

跨平台问题及通用解决方法

The Multi-platform Journey
(aka “mountain of pain”)

Multi-platform Obstacles

●Platform Performance

●Managing Builds

● Incompatible Settings

●SDK and Code Conflicts

●Upgrading Unity

Upgrading Unity

SDK and Code Conflicts

Incompatible Settings

Managing Builds

Platform

Performance

SDK and Code conflicts

Issues:

❖ SDKs
❖ packages
❖ DLL problems
❖ third-party’s libraries and its dependencies for each

platform
❖ third-party’s rule etc.

SDK and Code conflicts

Solution:

✓ Fork the project
✓ Branch the project in VCS(Version Control System)
✓ Use Platform Define Symbols
✓ Exclude files from import
✓ Packages selectively applied for specific platforms
✓ Ability to use >1 version of a package

Incompatible Settings

Issues:

❖ platform devices require lots of different libraries
❖ platform devices require lots of different graphics

settings
❖ different project settings

Incompatible Settings

Solutions:

✓ Write custom scripts to change static settings
✓ Create build steps that run pre/post build

Managing Builds

Issues:

❖ developers represent the build data as scriptable
objects, which represent each state that you can
build to

❖ developers might need to share certain data
between builds that are for the same environments
(e.g. staging and production, etc)

Managing Builds

Solutions:

✓ Manage config data outside Unity, apply during build steps
✓ Create a custom UI/Tool
✓ Download a tool from asset store

Platform Performance

Issues:

❖ developers might have internal libraries that handles
vast amount of platform stuff, e.g. how console users
are different from mobile

❖ it’s hard to understand why two platforms might have
different build sizes. being able to diff/compre build
reports would be useful

Platform Performance

Solutions:

✓ Use a build report plugin or write your own
✓ Build reporting to reason about what goes into a build
✓ Platform resource budgeting
✓ Rich content and code profiling on device

❖ Platform Performance

❖ Managing Builds

❖ Incompatible Settings

❖ SDK and Code Conflicts

✓ Platform Profiling + Build Reporting

✓ Build Configurations

✓ New Project Settings + Verified Platform Defaults

✓ Exclude files from import

Unity目前已有的解决方案

● Features we have

● Long term: Unlocks Innovation in multiple areas

Features we have

✓ NetCode/Multiplayer

✓ Auto Streaming + Addressables

✓ 分布式导入

✓ 分布式构建Assetbundle

✓ 分布式光照贴图烘焙

✓ 分布式编译il2cpp

✓ XR SDK 集成

✓ 企业版China Cloud Build部署

Multi-platform Development Foundation:

●Better XR device user experience/ support

●Smoother integration with Cloud Content Delivery (CCD) + Addressable

●Supports Cloud Build and other C.I. systems

●Smoother integration with Unity Distribution Portal

●More flexible configuration = better quality game MWU

Long term: Unlocks Innovation in multiple areas

单个平台移植的基本流程

●Pre-porting

●Porting

●work loop

Bug fix-QA loop

Optimization-QA loop

●Submission

Pre-porting

Preparation!

● develop device

● developer account

● develop environment (hardware & software) setup

unity version

people

SDKs

software

network

etc.

Pre-porting

Pick up on it!

● device characteristics: CPU, GPU, Memory, OS, File System etc.

● development documentation reading

● try to build and run with an empty project correctly on your device

Porting

The first step is always difficult!

● switch project to platform

● various error-fixing

● build

● run

Porting

Get through!

● stabilization: get rid of crash, freeze

● bugs: contents bugs, platform/rendering related (upside down, flickering, broken

picture, black edges, and incorrect hollow, etc.)

● build

● run

Bug fixing-QA Loop

while (!buglist.empty)

{

fix buglist

QA-test

{

buglist++ or buglist--

}

}

Optimization-QA Loop

while (true)

{

profiling fps, memory, loading time, heat...

coding...

QA-test

if (performance is ok)

break;

}

Optimization-QA Loop

Profiling, Profiling, Profiling!

●Unity profilers

Unity profiler, Memory profiler(package), Frame Debugger etc.

● platform’s profiler

iOS: instrument (timeline, allocation, etc.), GPU frame capture

Android: system tracing, Arm Mobile Studio, Snapdragon Profiler, GAPID

PC: Intel's VTune Amplifier (C++) , 3DMark

console own its profiler

●UPR

●Unity official PR (Project Review)

Unity引擎相关的优化

●Use latest version

●Core and thread

●Unity source code optimization

●Take advantage of platform specific feature

Use Latest Unity

Profits:

● 2020.2 Editor performance big improvement

● Fix main thread wait preload thread issue

● Incremental GC

●Use DynamicAllocator

●GetShaderTagID

●Utif8

● etc.

Core and thread

Maximize!

●Control work thread numbers

●Do not migrate heave threads

●Migrate threads with low CPU usage

● Examine generally when any locks on the main thread actually does occur

●Use TempAlloc / JobTempAlloc

Unity source code optimization

Understand Source-code/use Unity with new version :

●SIMD improve FindeIndexOfValueInArray performance

●BucketAllocator for gfx thread to get rid of mutex

● etc.

m jobs

总结

●跨平台问题及通用解决方法

●Unity目前已有的加速方案

●单个平台移植的基本流程

●Unity引擎相关的优化

References

• https://docs.unity3d.com/Manual/SpecialFolders.html

• https://docs.unity3d.com/Manual/SL-PlatformDifferences.html

• https://upr.unity.com

• https://developer.apple.com/documentation/metal/frame_capture_debugging_tools

• https://developer.android.com/topic/performance/tracing

• https://gapid.dev/about

• https://www.arm.com/products/development-tools/graphics/arm-mobile-studio

• https://developer.qualcomm.com/software/snapdragon-profiler

https://docs.unity3d.com/Manual/SpecialFolders.html
https://docs.unity3d.com/Manual/SL-PlatformDifferences.html
https://upr.unity.com/
https://developer.apple.com/documentation/metal/frame_capture_debugging_tools
https://developer.android.com/topic/performance/tracing
https://gapid.dev/about
https://www.arm.com/products/development-tools/graphics/arm-mobile-studio
https://developer.qualcomm.com/software/snapdragon-profiler

Thank you!

