Bolt (/forums/4-bolt/) / Flow Graphs (/forums/4-bolt/categories/41-flow-graphs/topics/) @Articles

‘ Units & Ports (/topics/149-units-ports/)

Before starting this section of the manual, we assume that you've read the Introduction
(http://support.ludiqg.io/forums/4-bolt/categories/37-introduction/topics/), that you're familiar with the Basic
Concepts (http://support.ludig.io/forums/4-bolt/categories/38-basic-concepts/topics/) and that you've
created a Flow Machine (http://support.ludiq.io/topics/138-graphs-machines-graph-assets/).

At this point, you should have a flow graph with a Start and Update event:

i1 Flow Graph
&Gameﬂbject F00M s—— 13 Relations | “alues | Dim | Carry | Align = Distribute =

Units

Units are the most basic element of computation in Bolt. They are represented as nodes with input and
output ports in flow graphs. Units can do a do a wide variety of things, for example listen for an event, get
the value of a variable, invoke methods on components and game objects, etc.

Units use connections to indicate in what order they should be called and to pass values from one

another. We'll cover connections in the next article. For now, let's focus on units and their ports.

Creating Units

By default, there are over 23 000 available units in Bolt. They include the entire Unity scripting API, as well
as all the methods and classes from your custom scripts or third party plugins. Finally, there are some
additional utility units for math, logic, variables, loops, branching, events and coroutines.

Fortunately, these units are well organized in a simple, searchable creation menu called the fuzzy finder .

To display the fuzzy finder, simply right-click anywhere in the empty grid. You can then browse through

the categories or search in the top field to quickly find a unit. Here, for example, we're adding a simple

http://support.ludiq.io/forums/4-bolt/
http://support.ludiq.io/forums/4-bolt/categories/41-flow-graphs/topics/
http://support.ludiq.io/topics/149-units-ports/
http://support.ludiq.io/forums/4-bolt/categories/37-introduction/topics/
http://support.ludiq.io/forums/4-bolt/categories/38-basic-concepts/topics/
http://support.ludiq.io/topics/138-graphs-machines-graph-assets/

SCalar adaiuon (rnoat + 1ioat) unit with booth metnoads:

i Flow Graph © Graph Insp.
hGameObjact Z0OM so— 1% Relations | Values | Dim | Carry | Align # | Distribute ¢ | Owverview |(Tit|°) |

(Summary) |

Control Inputs

Control Qutputs

Value Inputs

Value Outputs

The first thing you'll notice is that your new units appear as dimmed out. This is because Bolt warns you
that their value is never used. Indeed, we're not using the result of the addition anywhere, so these nodes
are currently "useless".

This is a very useful predictive debugging feature, but since we're not going to be connecting nodes until
the next article, you might want to disable it to see what you're doing for now. You can toggle dimming with
the | pim | button in the toolbar:

Relations | Values | Dim | Carry | Align | Distribute = | Owverview

The fuzzy finder gives you a preview documentation of each unit before you even create it. For example,
for the add node, we can know what it does and what ports it has straight from the fuzzy finder:

Q])
- Scalar
.|

[WAadd N
@Subtract

@Multiply

(+)Divide

@Exponentiate

Mnduln

@Ruut

@Absulute

@Ruund
@Minimum

@Maximum

@Sum
(¥)Average 3
i Returns the sum of two
scalars.

A: The first value, (Float
Input)

B: The second value. (Float
Input)

() A + B: The sum of A and B,
(Float Qutput)

Overloads

Some units have multiple variations, which are called overloads .

For example, there are 4 Add units: one for scalars, and one for 2D vectors, 3D vectors and 4D vectors.

In this case, you can use their category to distinguish them.

' add

(#)Add (in Math/Scalar)

(#)Add (in Math/Vector 2)
(#)Add (in Math/Vector 3)
(#)Add (in Math/Vector 4)

Some method units have parameter overloads. Usually, these variations are for convenience and each will
do roughly the same thing. Some overloads allow for more specific configuration than others.

For example, the Rotate Transform unit has 6 overloads. Two of them take the angles as a single euler
angle vector, two other take it as 3 separate float components in X /Y / Z, and the last two take it as an
angle relative to the axis. In each pair, one allows to specify the relative space, while the other just
assumes that you're specifying angles in world space. Here's a screenshot of all 6 overloads for the rotate
unit:

T rotatel

Search

I Transform: Rotate [Euler Angles)

~~ Transform: Rotate (Euler Angles, Relative To)

~~ Transform: Rotate (X Angle, ¥ Angle, Z Anagle)
~~Transform: Rotate (¥ Angle, ¥ Angle, Z Angle, Relative To)
.~ Transform: Rotate (Axis, Angle)

~~ Transform: Rotate (Axis, Angle, Relative To)

Relative space option

Transform

Rotate

Transform

Rotate
5 E:) -] Eb
N = o " o . [self o
o) ., Euler Angles [0 [0 [0 |
. % Bl sl IU_”U_”U_| O O Relative To | World $

as separate floats

Transfarm Transfarm

Rotate Rotate
> E:}) > E:}
oy -, Self o] il . |Self (o}
ol (™) % anagle [0 - @ ¥ Angle 0
®] @ Y angle [0 o @) v angle [0

8] @ z Angle |—|U I@ ZAm_.]Ie 0
ol | | Relative To | world 3

Angle around axis

Transfarm

Transform Rotate
Rotate

Self @

i e e

ol (@) Angle 0 @l () Relative To [World 3

It might take some trial and error to find the right overload at first, but you'll quickly get used to the
available options. You can use the built-in documentation or the Unity manual to help you distinguish
between each variation.

Take a moment to explore the unit options and browse around the fuzzy finder. But don't worry if you're
overwhelmed at first: we'll have a look at every kind of unit over the next few articles.

Reading Units

Let's look at the anatomy of a unit. In this example, we created a Rotate Transform unit, which you can find

under Codebase > Unity Engine > Transform > Rotate (X, Y, Z, Relative To) .

ih

a
i Flow Graph -= | @ Graph Insp.
EIGameDhject Z00M s 1x | Relations | Values | Dim | Carry Rotate
ﬁ # ., Applies a rotation of zAngle deqgrees

around the z axis, xAngle degrees
around the x axis, and yAngle
degrees around the y axis (in that
order].

Invocation [L Rotate &

Inputs
=» Invoke : Flow
Transform The entry point to invoke the method.

Rotate ~ Target : Transform
The target object
= >

[Z::-

- X Angle : Float

0 ° ®

= S Degrees to rotate around the X axis,
(8] * Angle

| D @ Y Angle : Float

@ bl IE' Degrees to rotate areund the ¥ axis.
O Z Angle

] g 0) Z Angle : Float
®) (") Relative To

Degrees to rotate around the Z axis,

(7) Relative To : Space
Rotation is local to object or Warld.

outputs

E» Exit: Flow

The action to call once method has been
invaked,

@ Unit is never entered.

The top part of a unit is its header. It's a quick summary of what the unit does. In this case, it tells us that it
is invoking the Rotate (https://docs.unity3d.com/ScriptReference/Transform.Rotate.html) method on
a Transform (https://docs.unity3d.com/ScriptReference/Transform.html) component.

You can tell the unit is selected because of the slight blue glow around its edge. When a unit is selected,
its options and documentation will show in the Graph Inspector, which is placed on the right of the window
in this screenshot.

Ports

Ports are hooks that you can use to connect nodes together.
On the left side, you'll find the Input Ports .

On the right side, you'll find Output Ports .

. m Control Ports are used to connect the = Flow . Think of the flow as the order in which nodes

should be executed. Flow always goes from left to right, hence the direction of the little arrow.

. E Value Ports are used to connect... well, values. Each value port has a Type

(http://support.ludig.io/topics/132-types/) that must be matched when connecting nodes.

Unit Inspector

Let's break down the unit inspector:

© Graph Insp.

Rotate
Applies a rotation of zA&ngle degrees

https://docs.unity3d.com/ScriptReference/Transform.Rotate.html
https://docs.unity3d.com/ScriptReference/Transform.html
http://support.ludiq.io/topics/132-types/

around the z axis, xAngle degrees
around the x axis, and yAngle

degrees around the y axis (in that
arder].

Invocation | L Rotate ™

Inputs

E» Invoke : Flow
The entry paoint to invoke the methad.

+ Target : Transform
The target object.

(%) % Angle : Float

Degrees to rotate around the ¥ axis,

™ ¥ Angle : Float

Degrees to rotate around the ¥ axis,

¥ Z Angle : Float

Degrees to rotate around the Z axis.

(") Relative To @ Space
Retation is local to object ar Warld.

Outputs
E» Exit: Flow

The action te call ence method has been
invaked,

@ Unit is never entared.

1. At the top, in the red rectangle, you can see the title and summary for the unit, which gives you a
quick overview of what it does.

2. Below, in the blue rectangle, you have the unit's settings . They vary from unit to unit, and some

units don't even need settings. In this case, we could change the method that we are invoking if we
wanted.

3. In the green rectangle, you have the documentation for each port . First its name (e.g. "X Angle"),

then its type (e.g. "Float"), and finally its summary ("Degrees to rotate around the X axis").

4. Finally, in the yellow rectangle at the bottom, Bolt will display all the warnings for the unit. For

example, here, Bolt warns us that the unit is never entered, because we never connected the
"Invoke" control input port. If we had dimming enabled, this unit would therefore be dimmed out.

Inline Values

You'll have noticed by now that some value input ports have small fields next to them. These are called
Inline Values . If the port is not connected, the value of this field will be used instead. Most common types

support inline values, but not all types do. Inline values are useful to keep your graphs tidy by avoiding the
creation of literal nodes for every value input port.

For example, these two graphs are exactly equivalent:

Transform

Rotate

=
A self o
ofl @ xangle0 |
ol @ v Angle 10 |
ol @ z angle [0 |
o8 () Relative To [Warld ¢

Transfarm
Rotate

] @ xangle o]

@) Y Angle

& ® zangle o]

World ¢ =) () Relative To

Now that we're familiar with units, let's have a look at how to create these connections!

Customer support service (//userecho.com?pcode=pwbue_label_ludiq) by UserEcho

http://userecho.com/?pcode=pwbue_label_ludiq

