您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
166 行
7.5 KiB
166 行
7.5 KiB
using System;
|
|
using System.Collections.Generic;
|
|
using System.Linq;
|
|
|
|
namespace UnityEngine.Experimental.Rendering.HDPipeline
|
|
{
|
|
public class LightUtils
|
|
{
|
|
// Physical light unit helper
|
|
// All light unit are in lumen (Luminous power)
|
|
// Punctual light (point, spot) are convert to candela (cd = lumens / steradian)
|
|
|
|
// For our isotropic area lights which expect radiance(W / (sr* m^2)) in the shader:
|
|
// power = Integral{area, Integral{hemisphere, radiance * <N, L>}},
|
|
// power = area * Pi * radiance,
|
|
// radiance = power / (area * Pi).
|
|
// We use photometric unit, so radiance is luminance and power is luminous power
|
|
|
|
// Ref: Moving Frostbite to PBR
|
|
// Also good ref: https://www.radiance-online.org/community/workshops/2004-fribourg/presentations/Wandachowicz_paper.pdf
|
|
|
|
// convert intensity (lumen) to candela
|
|
public static float ConvertPointLightLumenToCandela(float intensity)
|
|
{
|
|
return intensity / (4.0f * Mathf.PI);
|
|
}
|
|
|
|
// convert intensity (candela) to lumen
|
|
public static float ConvertPointLightCandelaToLumen(float intensity)
|
|
{
|
|
return intensity * (4.0f * Mathf.PI);
|
|
}
|
|
|
|
// angle is the full angle, not the half angle in radiant
|
|
// convert intensity (lumen) to candela
|
|
public static float ConvertSpotLightLumenToCandela(float intensity, float angle, bool exact)
|
|
{
|
|
return exact ? intensity / (2.0f * (1.0f - Mathf.Cos(angle / 2.0f)) * Mathf.PI) : intensity / Mathf.PI;
|
|
}
|
|
|
|
public static float ConvertSpotLightCandelaToLumen(float intensity, float angle, bool exact)
|
|
{
|
|
return exact ? intensity * (2.0f * (1.0f - Mathf.Cos(angle / 2.0f)) * Mathf.PI) : intensity * Mathf.PI;
|
|
}
|
|
|
|
// angleA and angleB are the full opening angle, not half angle
|
|
// convert intensity (lumen) to candela
|
|
public static float ConvertFrustrumLightLumenToCandela(float intensity, float angleA, float angleB)
|
|
{
|
|
return intensity / (4.0f * Mathf.Asin(Mathf.Sin(angleA / 2.0f) * Mathf.Sin(angleB / 2.0f)));
|
|
}
|
|
|
|
public static float ConvertFrustrumLightCandelaToLumen(float intensity, float angleA, float angleB)
|
|
{
|
|
return intensity * (4.0f * Mathf.Asin(Mathf.Sin(angleA / 2.0f) * Mathf.Sin(angleB / 2.0f)));
|
|
}
|
|
|
|
// convert intensity (lumen) to nits
|
|
public static float ConvertSphereLightLumenToLuminance(float intensity, float sphereRadius)
|
|
{
|
|
return intensity / ((4.0f * Mathf.PI * sphereRadius * sphereRadius) * Mathf.PI);
|
|
}
|
|
|
|
// convert intensity (nits) to lumen
|
|
public static float ConvertSphereLightLuminanceToLumen(float intensity, float sphereRadius)
|
|
{
|
|
return intensity * ((4.0f * Mathf.PI * sphereRadius * sphereRadius) * Mathf.PI);
|
|
}
|
|
|
|
// convert intensity (lumen) to nits
|
|
public static float ConvertDiscLightLumenToLuminance(float intensity, float discRadius)
|
|
{
|
|
return intensity / ((discRadius * discRadius * Mathf.PI) * Mathf.PI);
|
|
}
|
|
|
|
// convert intensity (nits) to lumen
|
|
public static float ConvertDiscLightLuminanceToLumen(float intensity, float discRadius)
|
|
{
|
|
return intensity * ((discRadius * discRadius * Mathf.PI) * Mathf.PI);
|
|
}
|
|
|
|
// convert intensity (lumen) to nits
|
|
public static float ConvertRectLightLumenToLuminance(float intensity, float width, float height)
|
|
{
|
|
return intensity / ((width * height) * Mathf.PI);
|
|
}
|
|
|
|
// convert intensity (nits) to lumen
|
|
public static float ConvertRectLightLuminanceToLumen(float intensity, float width, float height)
|
|
{
|
|
return intensity * ((width * height) * Mathf.PI);
|
|
}
|
|
|
|
// convert intensity (lumen) to nits
|
|
public static float CalculateLineLightLumenToLuminance(float intensity, float lineWidth)
|
|
{
|
|
//Line lights expect radiance (W / (sr * m^2)) in the shader.
|
|
//In the UI, we specify luminous flux (power) in lumens.
|
|
//First, it needs to be converted to radiometric units (radiant flux, W).
|
|
|
|
//Then we must recall how to compute power from radiance:
|
|
|
|
//radiance = differential_power / (differrential_projected_area * differential_solid_angle),
|
|
//radiance = differential_power / (differrential_area * differential_solid_angle * <N, L>),
|
|
//power = Integral{area, Integral{hemisphere, radiance * <N, L>}}.
|
|
|
|
//Unlike tube lights, our line lights have no surface area, so the integral becomes:
|
|
|
|
//power = Integral{length, Integral{sphere, radiance}}.
|
|
|
|
//For an isotropic line light, radiance is constant, therefore:
|
|
|
|
//power = length * (4 * Pi) * radiance,
|
|
//radiance = power / (length * (4 * Pi)).
|
|
return intensity / (4.0f * Mathf.PI * lineWidth);
|
|
}
|
|
|
|
public static float CalculateLineLightLuminanceToLumen(float intensity, float lineWidth)
|
|
{
|
|
return intensity * (4.0f * Mathf.PI * lineWidth);
|
|
}
|
|
|
|
// spotAngle in radiant
|
|
public static void CalculateAnglesForPyramid(float aspectRatio, float spotAngle, out float angleA, out float angleB)
|
|
{
|
|
// Since the smallest angles is = to the fov, and we don't care of the angle order, simply make sure the aspect ratio is > 1
|
|
if (aspectRatio < 1.0f)
|
|
aspectRatio = 1.0f / aspectRatio;
|
|
|
|
angleA = spotAngle;
|
|
|
|
var halfAngle = angleA * 0.5f; // half of the smallest angle
|
|
var length = Mathf.Tan(halfAngle); // half length of the smallest side of the rectangle
|
|
length *= aspectRatio; // half length of the bigest side of the rectangle
|
|
halfAngle = Mathf.Atan(length); // half of the bigest angle
|
|
|
|
angleB = halfAngle * 2.0f;
|
|
}
|
|
|
|
// TODO: Do a cheaper fitting
|
|
// Given a correlated color temperature (in Kelvin), estimate the RGB equivalent. Curve fit error is max 0.008.
|
|
// return color in linear RGB space
|
|
public static Color CorrelatedColorTemperatureToRGB(float temperature)
|
|
{
|
|
float r, g, b;
|
|
|
|
// Temperature must fall between 1000 and 40000 degrees
|
|
// The fitting require to divide kelvin by 1000 (allow more precision)
|
|
float kelvin = Mathf.Clamp(temperature, 1000.0f, 40000.0f) / 1000.0f;
|
|
float kelvin2 = kelvin * kelvin;
|
|
|
|
// Using 6570 as a pivot is an approximation, pivot point for red is around 6580 and for blue and green around 6560.
|
|
// Calculate each color in turn (Note, clamp is not really necessary as all value belongs to [0..1] but can help for extremum).
|
|
// Red
|
|
r = kelvin < 6.570f ? 1.0f : Mathf.Clamp((1.35651f + 0.216422f * kelvin + 0.000633715f * kelvin2) / (-3.24223f + 0.918711f * kelvin), 0.0f, 1.0f);
|
|
// Green
|
|
g = kelvin < 6.570f ?
|
|
Mathf.Clamp((-399.809f + 414.271f * kelvin + 111.543f * kelvin2) / (2779.24f + 164.143f * kelvin + 84.7356f * kelvin2), 0.0f, 1.0f) :
|
|
Mathf.Clamp((1370.38f + 734.616f * kelvin + 0.689955f * kelvin2) / (-4625.69f + 1699.87f * kelvin), 0.0f, 1.0f);
|
|
//Blue
|
|
b = kelvin > 6.570f ? 1.0f : Mathf.Clamp((348.963f - 523.53f * kelvin + 183.62f * kelvin2) / (2848.82f - 214.52f * kelvin + 78.8614f * kelvin2), 0.0f, 1.0f);
|
|
|
|
return new Color(r, g, b, 1.0f);
|
|
}
|
|
}
|
|
}
|