您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 

260 行
10 KiB

using System;
using UnityEngine.Rendering;
namespace UnityEngine.Experimental.Rendering.HDPipeline
{
public partial class Lit : RenderPipelineMaterial
{
// Currently we have only one materialId (Standard GGX), so it is not store in the GBuffer and we don't test for it
// If change, be sure it match what is done in Lit.hlsl: MaterialFeatureFlagsFromGBuffer
// Material bit mask must match the size define LightDefinitions.s_MaterialFeatureMaskFlags value
[GenerateHLSL(PackingRules.Exact)]
public enum MaterialFeatureFlags
{
LitStandard = 1 << 0, // For material classification we need to identify that we are indeed use as standard material, else we are consider as sky/background element
LitSpecularColor = 1 << 1, // LitSpecularColor is not use statically but only dynamically
LitSubsurfaceScattering = 1 << 2,
LitTransmission = 1 << 3,
LitAnisotropy = 1 << 4,
LitIridescence = 1 << 5,
LitClearCoat = 1 << 6
};
//-----------------------------------------------------------------------------
// SurfaceData
//-----------------------------------------------------------------------------
// Main structure that store the user data (i.e user input of master node in material graph)
[GenerateHLSL(PackingRules.Exact, false, true, 1000)]
public struct SurfaceData
{
[SurfaceDataAttributes("MaterialFeatures")]
public uint materialFeatures;
// Standard
[SurfaceDataAttributes("Base Color", false, true)]
public Vector3 baseColor;
[SurfaceDataAttributes("Specular Occlusion")]
public float specularOcclusion;
[SurfaceDataAttributes(new string[] {"Normal", "Normal View Space"}, true)]
public Vector3 normalWS;
[SurfaceDataAttributes("Smoothness")]
public float perceptualSmoothness;
[SurfaceDataAttributes("Ambient Occlusion")]
public float ambientOcclusion;
[SurfaceDataAttributes("Metallic")]
public float metallic;
[SurfaceDataAttributes("Coat mask")]
public float coatMask;
// MaterialFeature dependent attribute
// Specular Color
[SurfaceDataAttributes("Specular Color", false, true)]
public Vector3 specularColor;
// SSS
[SurfaceDataAttributes("Diffusion Profile")]
public uint diffusionProfile;
[SurfaceDataAttributes("Subsurface Mask")]
public float subsurfaceMask;
// Transmission
// + Diffusion Profile
[SurfaceDataAttributes("Thickness")]
public float thickness;
// Anisotropic
[SurfaceDataAttributes("Tangent", true)]
public Vector3 tangentWS;
[SurfaceDataAttributes("Anisotropy")]
public float anisotropy; // anisotropic ratio(0->no isotropic; 1->full anisotropy in tangent direction, -1->full anisotropy in bitangent direction)
// Iridescence
[SurfaceDataAttributes("Iridescence Layer Thickness")]
public float iridescenceThickness;
[SurfaceDataAttributes("Iridescence Mask")]
public float iridescenceMask;
// Forward property only
// Transparency
// Reuse thickness from SSS
[SurfaceDataAttributes("Index of refraction")]
public float ior;
[SurfaceDataAttributes("Transmittance Color")]
public Vector3 transmittanceColor;
[SurfaceDataAttributes("Transmittance Absorption Distance")]
public float atDistance;
[SurfaceDataAttributes("Transmittance mask")]
public float transmittanceMask;
};
//-----------------------------------------------------------------------------
// BSDFData
//-----------------------------------------------------------------------------
[GenerateHLSL(PackingRules.Exact, false, true, 1050)]
public struct BSDFData
{
public uint materialFeatures;
[SurfaceDataAttributes("", false, true)]
public Vector3 diffuseColor;
public Vector3 fresnel0;
public float ambientOcclusion; // Caution: This is accessible only if light layer is enabled, otherwise it is 1
public float specularOcclusion;
[SurfaceDataAttributes(new string[] { "Normal WS", "Normal View Space" }, true)]
public Vector3 normalWS;
public float perceptualRoughness;
public float coatMask;
// MaterialFeature dependent attribute
// SpecularColor fold into fresnel0
// SSS
public uint diffusionProfile;
public float subsurfaceMask;
// Transmission
// + Diffusion Profile
public float thickness;
public bool useThickObjectMode; // Read from the diffusion profile
public Vector3 transmittance; // Precomputation of transmittance
// Anisotropic
[SurfaceDataAttributes("", true)]
public Vector3 tangentWS;
[SurfaceDataAttributes("", true)]
public Vector3 bitangentWS;
public float roughnessT;
public float roughnessB;
public float anisotropy;
// Iridescence
public float iridescenceThickness;
public float iridescenceMask;
// ClearCoat
public float coatRoughness; // Automatically fill
// Forward property only
// Transparency
public float ior;
// Reuse thickness from SSS
public Vector3 absorptionCoefficient;
public float transmittanceMask;
};
//-----------------------------------------------------------------------------
// GBuffer management
//-----------------------------------------------------------------------------
public override bool IsDefferedMaterial() { return true; }
protected void GetGBufferOptions(HDRenderPipelineAsset asset, out int gBufferCount, out bool supportShadowMask, out bool supportLightLayers)
{
// Caution: This must be in sync with GBUFFERMATERIAL_COUNT definition in
supportShadowMask = asset.renderPipelineSettings.supportShadowMask;
supportLightLayers = asset.renderPipelineSettings.supportLightLayers;
gBufferCount = 4 + (supportShadowMask ? 1 : 0) + (supportLightLayers ? 1 : 0);
}
// This must return the number of GBuffer to allocate
public override int GetMaterialGBufferCount(HDRenderPipelineAsset asset)
{
int gBufferCount;
bool unused0;
bool unused1;
GetGBufferOptions(asset, out gBufferCount, out unused0, out unused1);
return gBufferCount;
}
public override void GetMaterialGBufferDescription(HDRenderPipelineAsset asset, out RenderTextureFormat[] RTFormat, out bool[] sRGBFlag, out GBufferUsage[] gBufferUsage)
{
int gBufferCount;
bool supportShadowMask;
bool supportLightLayers;
GetGBufferOptions(asset, out gBufferCount, out supportShadowMask, out supportLightLayers);
RTFormat = new RenderTextureFormat[gBufferCount];
sRGBFlag = new bool[gBufferCount];
gBufferUsage = new GBufferUsage[gBufferCount];
RTFormat[0] = RenderTextureFormat.ARGB32; // Albedo sRGB / SSSBuffer
sRGBFlag[0] = true;
gBufferUsage[0] = GBufferUsage.SubsurfaceScattering;
RTFormat[1] = RenderTextureFormat.ARGB32; // Normal Buffer
sRGBFlag[1] = false;
gBufferUsage[1] = GBufferUsage.Normal;
RTFormat[2] = RenderTextureFormat.ARGB32; // Data
sRGBFlag[2] = false;
gBufferUsage[2] = GBufferUsage.None;
RTFormat[3] = Builtin.GetLightingBufferFormat();
sRGBFlag[3] = Builtin.GetLightingBufferSRGBFlag();
gBufferUsage[3] = GBufferUsage.None;
int index = 4;
if (supportLightLayers)
{
RTFormat[index] = RenderTextureFormat.ARGB32;
sRGBFlag[index] = false;
gBufferUsage[index] = GBufferUsage.LightLayers;
index++;
}
// All buffer above are fixed. However shadow mask buffer can be setup or not depends on light in view.
// Thus it need to be the last one, so all indexes stay the same
if (supportShadowMask)
{
RTFormat[index] = Builtin.GetShadowMaskBufferFormat();
sRGBFlag[index] = Builtin.GetShadowMaskBufferSRGBFlag();
gBufferUsage[index] = GBufferUsage.ShadowMask;
index++;
}
}
//-----------------------------------------------------------------------------
// Init precomputed texture
//-----------------------------------------------------------------------------
public Lit() {}
public override void Build(HDRenderPipelineAsset hdAsset)
{
PreIntegratedFGD.instance.Build(PreIntegratedFGD.FGDIndex.FGD_GGXAndDisneyDiffuse);
LTCAreaLight.instance.Build();
}
public override void Cleanup()
{
PreIntegratedFGD.instance.Cleanup(PreIntegratedFGD.FGDIndex.FGD_GGXAndDisneyDiffuse);
LTCAreaLight.instance.Cleanup();
}
public override void RenderInit(CommandBuffer cmd)
{
PreIntegratedFGD.instance.RenderInit(PreIntegratedFGD.FGDIndex.FGD_GGXAndDisneyDiffuse, cmd);
}
public override void Bind()
{
PreIntegratedFGD.instance.Bind(PreIntegratedFGD.FGDIndex.FGD_GGXAndDisneyDiffuse);
LTCAreaLight.instance.Bind();
}
}
}