您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 

463 行
15 KiB

Shader "Hidden/Internal-Obscurity" {
Properties {
_LightTexture0 ("", any) = "" {}
_ShadowMapTexture ("", any) = "" {}
_SrcBlend ("", Float) = 1
_DstBlend ("", Float) = 1
}
SubShader {
Pass
{
ZWrite Off
ZTest Always
Cull Off
Blend Off
//Blend [_SrcBlend] [_DstBlend]
CGPROGRAM
#pragma target 5.0
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
#include "UnityStandardBRDF.cginc"
#include "UnityStandardUtils.cginc"
#include "UnityPBSLighting.cginc"
#include "..\common\ShaderBase.h"
#include "LightDefinitions.cs"
uniform float4x4 g_mViewToWorld;
uniform float4x4 g_mInvScrProjection;
uniform float4x4 g_mScrProjection;
uniform uint g_nDirLights;
//---------------------------------------------------------------------------------------------------------------------------------------------------------
// TODO: clean up.. -va
#define MAX_SHADOW_LIGHTS 10
#define MAX_SHADOWMAP_PER_LIGHT 6
#define MAX_DIRECTIONAL_SPLIT 4
#define CUBEMAPFACE_POSITIVE_X 0
#define CUBEMAPFACE_NEGATIVE_X 1
#define CUBEMAPFACE_POSITIVE_Y 2
#define CUBEMAPFACE_NEGATIVE_Y 3
#define CUBEMAPFACE_POSITIVE_Z 4
#define CUBEMAPFACE_NEGATIVE_Z 5
CBUFFER_START(ShadowLightData)
float4 g_vShadow3x3PCFTerms0;
float4 g_vShadow3x3PCFTerms1;
float4 g_vShadow3x3PCFTerms2;
float4 g_vShadow3x3PCFTerms3;
float4 g_vDirShadowSplitSpheres[MAX_DIRECTIONAL_SPLIT];
float4x4 g_matWorldToShadow[MAX_SHADOW_LIGHTS * MAX_SHADOWMAP_PER_LIGHT];
CBUFFER_END
//---------------------------------------------------------------------------------------------------------------------------------------------------------
Texture2D _CameraDepthTexture;
Texture2D _CameraGBufferTexture0;
Texture2D _CameraGBufferTexture1;
Texture2D _CameraGBufferTexture2;
//UNITY_DECLARE_TEX2D(_LightTextureB0);
sampler2D _LightTextureB0;
UNITY_DECLARE_TEX2DARRAY(_spotCookieTextures);
UNITY_DECLARE_TEXCUBEARRAY(_pointCookieTextures);
StructuredBuffer<uint> g_vLightList;
StructuredBuffer<SFiniteLightData> g_vLightData;
StructuredBuffer<DirectionalLight> g_dirLightData;
float GetLinearDepth(float3 vP)
{
Vec3 var = 1.0;
//float4 v4Pres = mul(float4(vP,1.0), g_mInvScrProjection);
float4 v4Pres = mul(g_mInvScrProjection, float4(vP,1.0));
return v4Pres.z / v4Pres.w;
}
float3 GetViewPosFromLinDepth(float2 v2ScrPos, float fLinDepth)
{
float fSx = g_mScrProjection[0].x;
//float fCx = g_mScrProjection[2].x;
float fCx = g_mScrProjection[0].z;
float fSy = g_mScrProjection[1].y;
//float fCy = g_mScrProjection[2].y;
float fCy = g_mScrProjection[1].z;
#ifdef LEFT_HAND_COORDINATES
return fLinDepth*float3( ((v2ScrPos.x-fCx)/fSx), ((v2ScrPos.y-fCy)/fSy), 1.0 );
#else
return fLinDepth*float3( -((v2ScrPos.x+fCx)/fSx), -((v2ScrPos.y+fCy)/fSy), 1.0 );
#endif
}
uint FetchLightCount(const uint tileOffs)
{
return g_vLightList[ 16*tileOffs + 0]&0xffff;
}
uint FetchIndex(const uint tileOffs, const uint l)
{
const uint l1 = l+1;
return (g_vLightList[ 16*tileOffs + (l1>>1)]>>((l1&1)*16))&0xffff;
}
float3 ExecuteLightList(uint2 pixCoord, const uint offs);
float3 OverlayHeatMap(uint uNumLights, float3 c);
#define VALVE_DECLARE_SHADOWMAP( tex ) Texture2D tex; SamplerComparisonState sampler##tex
#define VALVE_SAMPLE_SHADOW( tex, coord ) tex.SampleCmpLevelZero( sampler##tex, (coord).xy, (coord).z )
VALVE_DECLARE_SHADOWMAP(g_tShadowBuffer);
float ComputeShadow_PCF_3x3_Gaussian(float3 vPositionWs, float4x4 matWorldToShadow)
{
float4 vPositionTextureSpace = mul(float4(vPositionWs.xyz, 1.0), matWorldToShadow);
vPositionTextureSpace.xyz /= vPositionTextureSpace.w;
float2 shadowMapCenter = vPositionTextureSpace.xy;
if ((shadowMapCenter.x < 0.0f) || (shadowMapCenter.x > 1.0f) || (shadowMapCenter.y < 0.0f) || (shadowMapCenter.y > 1.0f))
return 1.0f;
float objDepth = saturate(257.0 / 256.0 - vPositionTextureSpace.z);
float4 v20Taps;
v20Taps.x = VALVE_SAMPLE_SHADOW(g_tShadowBuffer, float3(shadowMapCenter.xy + g_vShadow3x3PCFTerms1.xy, objDepth)).x; // 1 1
v20Taps.y = VALVE_SAMPLE_SHADOW(g_tShadowBuffer, float3(shadowMapCenter.xy + g_vShadow3x3PCFTerms1.zy, objDepth)).x; // -1 1
v20Taps.z = VALVE_SAMPLE_SHADOW(g_tShadowBuffer, float3(shadowMapCenter.xy + g_vShadow3x3PCFTerms1.xw, objDepth)).x; // 1 -1
v20Taps.w = VALVE_SAMPLE_SHADOW(g_tShadowBuffer, float3(shadowMapCenter.xy + g_vShadow3x3PCFTerms1.zw, objDepth)).x; // -1 -1
float flSum = dot(v20Taps.xyzw, float4(0.25, 0.25, 0.25, 0.25));
if ((flSum == 0.0) || (flSum == 1.0))
return flSum;
flSum *= g_vShadow3x3PCFTerms0.x * 4.0;
float4 v33Taps;
v33Taps.x = VALVE_SAMPLE_SHADOW(g_tShadowBuffer, float3(shadowMapCenter.xy + g_vShadow3x3PCFTerms2.xz, objDepth)).x; // 1 0
v33Taps.y = VALVE_SAMPLE_SHADOW(g_tShadowBuffer, float3(shadowMapCenter.xy + g_vShadow3x3PCFTerms3.xz, objDepth)).x; // -1 0
v33Taps.z = VALVE_SAMPLE_SHADOW(g_tShadowBuffer, float3(shadowMapCenter.xy + g_vShadow3x3PCFTerms3.zy, objDepth)).x; // 0 -1
v33Taps.w = VALVE_SAMPLE_SHADOW(g_tShadowBuffer, float3(shadowMapCenter.xy + g_vShadow3x3PCFTerms2.zy, objDepth)).x; // 0 1
flSum += dot(v33Taps.xyzw, g_vShadow3x3PCFTerms0.yyyy);
flSum += VALVE_SAMPLE_SHADOW(g_tShadowBuffer, float3(shadowMapCenter.xy, objDepth)).x * g_vShadow3x3PCFTerms0.z;
return flSum;
}
//---------------------------------------------------------------------------------------------------------------------------------------------------------
/**
* Gets the cascade weights based on the world position of the fragment and the positions of the split spheres for each cascade.
* Returns an invalid split index if past shadowDistance (ie 4 is invalid for cascade)
*/
float GetSplitSphereIndexForDirshadows(float3 wpos)
{
float3 fromCenter0 = wpos.xyz - g_vDirShadowSplitSpheres[0].xyz;
float3 fromCenter1 = wpos.xyz - g_vDirShadowSplitSpheres[1].xyz;
float3 fromCenter2 = wpos.xyz - g_vDirShadowSplitSpheres[2].xyz;
float3 fromCenter3 = wpos.xyz - g_vDirShadowSplitSpheres[3].xyz;
float4 distances2 = float4(dot(fromCenter0, fromCenter0), dot(fromCenter1, fromCenter1), dot(fromCenter2, fromCenter2), dot(fromCenter3, fromCenter3));
float4 vDirShadowSplitSphereSqRadii;
vDirShadowSplitSphereSqRadii.x = g_vDirShadowSplitSpheres[0].w;
vDirShadowSplitSphereSqRadii.y = g_vDirShadowSplitSpheres[1].w;
vDirShadowSplitSphereSqRadii.z = g_vDirShadowSplitSpheres[2].w;
vDirShadowSplitSphereSqRadii.w = g_vDirShadowSplitSpheres[3].w;
fixed4 weights = float4(distances2 < vDirShadowSplitSphereSqRadii);
weights.yzw = saturate(weights.yzw - weights.xyz);
return 4 - dot(weights, float4(4, 3, 2, 1));
}
float SampleShadow(uint type, float3 vPositionWs, float3 vPositionToLightDirWs, uint lightIndex)
{
float flShadowScalar = 1.0;
int shadowSplitIndex = 0;
if (type == DIRECTIONAL_LIGHT)
{
shadowSplitIndex = GetSplitSphereIndexForDirshadows(vPositionWs);
}
else if (type == SPHERE_LIGHT)
{
float3 absPos = abs(vPositionToLightDirWs);
shadowSplitIndex = (vPositionToLightDirWs.z > 0) ? CUBEMAPFACE_NEGATIVE_Z : CUBEMAPFACE_POSITIVE_Z;
if (absPos.x > absPos.y)
{
if (absPos.x > absPos.z)
{
shadowSplitIndex = (vPositionToLightDirWs.x > 0) ? CUBEMAPFACE_NEGATIVE_X : CUBEMAPFACE_POSITIVE_X;
}
}
else
{
if (absPos.y > absPos.z)
{
shadowSplitIndex = (vPositionToLightDirWs.y > 0) ? CUBEMAPFACE_NEGATIVE_Y : CUBEMAPFACE_POSITIVE_Y;
}
}
}
flShadowScalar = ComputeShadow_PCF_3x3_Gaussian(vPositionWs.xyz, g_matWorldToShadow[lightIndex * MAX_SHADOWMAP_PER_LIGHT + shadowSplitIndex]);
return flShadowScalar;
}
struct v2f {
float4 vertex : SV_POSITION;
float2 texcoord : TEXCOORD0;
};
v2f vert (float4 vertex : POSITION, float2 texcoord : TEXCOORD0)
{
v2f o;
o.vertex = UnityObjectToClipPos(vertex);
o.texcoord = texcoord.xy;
return o;
}
half4 frag (v2f i) : SV_Target
{
uint2 pixCoord = ((uint2) i.vertex.xy);
uint iWidth;
uint iHeight;
_CameraDepthTexture.GetDimensions(iWidth, iHeight);
uint nrTilesX = (iWidth+15)/16;
uint nrTilesY = (iHeight+15)/16;
uint2 tileIDX = pixCoord / 16;
const int offs = tileIDX.y*nrTilesX+tileIDX.x;
float3 c = ExecuteLightList(pixCoord, offs);
//c = OverlayHeatMap(FetchLightCount(offs), c);
return float4(c,1.0);
}
struct StandardData
{
float3 specularColor;
float3 diffuseColor;
float3 normalWorld;
float smoothness;
};
StandardData UnityStandardDataFromGbuffer(float4 gbuffer0, float4 gbuffer1, float4 gbuffer2)
{
StandardData data;
data.normalWorld = normalize(2*gbuffer2.xyz-1);
data.smoothness = gbuffer1.a;
data.diffuseColor = gbuffer0.xyz; data.specularColor = gbuffer1.xyz;
float ao = gbuffer0.a;
return data;
}
float3 ExecuteLightList(uint2 pixCoord, const uint offs)
{
float3 v3ScrPos = float3(pixCoord.x+0.5, pixCoord.y+0.5, FetchDepth(_CameraDepthTexture, pixCoord.xy).x);
float linDepth = GetLinearDepth(v3ScrPos);
float3 vP = GetViewPosFromLinDepth(v3ScrPos.xy, linDepth);
float3 vWSpaceVDir = normalize(mul((float3x3) g_mViewToWorld, -vP).xyz); //unity_CameraToWorld
float4 gbuffer0 = _CameraGBufferTexture0.Load( uint3(pixCoord.xy, 0) );
float4 gbuffer1 = _CameraGBufferTexture1.Load( uint3(pixCoord.xy, 0) );
float4 gbuffer2 = _CameraGBufferTexture2.Load( uint3(pixCoord.xy, 0) );
StandardData data = UnityStandardDataFromGbuffer(gbuffer0, gbuffer1, gbuffer2);
float oneMinusReflectivity = 1.0 - SpecularStrength(data.specularColor.rgb);
UnityIndirect ind;
UNITY_INITIALIZE_OUTPUT(UnityIndirect, ind);
ind.diffuse = 0;
ind.specular = 0;
float3 ints = 0;
const uint uNrLights = FetchLightCount(offs);
uint l=0;
float3 vPositionWs = mul(g_mViewToWorld, float4(vP, 1));
for (int i = 0; i < g_nDirLights; i++)
{
DirectionalLight lightData = g_dirLightData[i];
float atten = 1;
[branch]
if (lightData.uShadowLightIndex != 0xffffffff)
{
float shadowScalar = SampleShadow(DIRECTIONAL_LIGHT, vPositionWs, 0, lightData.uShadowLightIndex);
atten *= shadowScalar;
}
UnityLight light;
light.color.xyz = lightData.vCol.xyz * atten;
light.dir.xyz = mul((float3x3) g_mViewToWorld, -lightData.vLaxisZ).xyz;
ints += UNITY_BRDF_PBS(data.diffuseColor, data.specularColor, oneMinusReflectivity, data.smoothness, data.normalWorld, vWSpaceVDir, light, ind);
}
// we need this outer loop for when we cannot assume a wavefront is 64 wide
// since in this case we cannot assume the lights will remain sorted by type
// during processing in lightlist_cs.hlsl
#if !defined(XBONE) && !defined(PLAYSTATION4)
while(l<uNrLights)
#endif
{
uint uIndex = l<uNrLights ? FetchIndex(offs, l) : 0;
uint uLgtType = l<uNrLights ? g_vLightData[uIndex].uLightType : 0;
// specialized loop for spot lights
while(l<uNrLights && uLgtType==SPOT_LIGHT)
{
SFiniteLightData lgtDat = g_vLightData[uIndex];
float3 vLp = lgtDat.vLpos.xyz;
float3 toLight = vLp - vP;
float dist = length(toLight);
float3 vL = toLight / dist;
float attLookUp = dist*lgtDat.fRecipRange; attLookUp *= attLookUp;
float atten = tex2Dlod(_LightTextureB0, float4(attLookUp.rr, 0.0, 0.0)).UNITY_ATTEN_CHANNEL;
// spot attenuation
const float fProjVec = -dot(vL, lgtDat.vLaxisZ.xyz); // spotDir = lgtDat.vLaxisZ.xyz
float2 cookCoord = (-lgtDat.cotan)*float2( dot(vL, lgtDat.vLaxisX.xyz), dot(vL, lgtDat.vLaxisY.xyz) ) / fProjVec;
const bool bHasCookie = (lgtDat.flags&IS_CIRCULAR_SPOT_SHAPE)==0; // all square spots have cookies
float d0 = 0.65;
float4 angularAtt = float4(1,1,1,smoothstep(0.0, 1.0-d0, 1.0-length(cookCoord)));
[branch]if(bHasCookie)
{
cookCoord = cookCoord*0.5 + 0.5;
angularAtt = UNITY_SAMPLE_TEX2DARRAY_LOD(_spotCookieTextures, float3(cookCoord, lgtDat.iSliceIndex), 0.0);
}
atten *= angularAtt.w*(fProjVec>0.0); // finally apply this to the dist att.
const bool bHasShadow = (lgtDat.flags&HAS_SHADOW)!=0;
[branch]if(bHasShadow)
{
float shadowScalar = SampleShadow(SPOT_LIGHT, vPositionWs, 0, lgtDat.uShadowLightIndex);
atten *= shadowScalar;
}
UnityLight light;
light.color.xyz = lgtDat.vCol.xyz*atten*angularAtt.xyz;
light.dir.xyz = mul((float3x3) g_mViewToWorld, vL).xyz; //unity_CameraToWorld
ints += UNITY_BRDF_PBS (data.diffuseColor, data.specularColor, oneMinusReflectivity, data.smoothness, data.normalWorld, vWSpaceVDir, light, ind);
++l; uIndex = l<uNrLights ? FetchIndex(offs, l) : 0;
uLgtType = l<uNrLights ? g_vLightData[uIndex].uLightType : 0;
}
// specialized loop for sphere lights
while(l<uNrLights && uLgtType==SPHERE_LIGHT)
{
SFiniteLightData lgtDat = g_vLightData[uIndex];
float3 vLp = lgtDat.vLpos.xyz;
float3 toLight = vLp - vP;
float dist = length(toLight);
float3 vL = toLight / dist;
float3 vLw = mul((float3x3) g_mViewToWorld, vL).xyz; //unity_CameraToWorld
float attLookUp = dist*lgtDat.fRecipRange; attLookUp *= attLookUp;
float atten = tex2Dlod(_LightTextureB0, float4(attLookUp.rr, 0.0, 0.0)).UNITY_ATTEN_CHANNEL;
float4 cookieColor = float4(1,1,1,1);
const bool bHasCookie = (lgtDat.flags&HAS_COOKIE_TEXTURE)!=0;
[branch]if(bHasCookie)
{
float3 cookieCoord = -float3(dot(vL, lgtDat.vLaxisX.xyz), dot(vL, lgtDat.vLaxisY.xyz), dot(vL, lgtDat.vLaxisZ.xyz)); // negate to make vL a fromLight vector
cookieColor = UNITY_SAMPLE_TEXCUBEARRAY_LOD(_pointCookieTextures, float4(cookieCoord, lgtDat.iSliceIndex), 0.0);
atten *= cookieColor.w;
}
const bool bHasShadow = (lgtDat.flags&HAS_SHADOW)!=0;
[branch]if(bHasShadow)
{
float shadowScalar = SampleShadow(SPHERE_LIGHT, vPositionWs, vLw, lgtDat.uShadowLightIndex);
atten *= shadowScalar;
}
UnityLight light;
light.color.xyz = lgtDat.vCol.xyz*atten*cookieColor.xyz;
light.dir.xyz = vLw;
ints += UNITY_BRDF_PBS (data.diffuseColor, data.specularColor, oneMinusReflectivity, data.smoothness, data.normalWorld, vWSpaceVDir, light, ind);
++l; uIndex = l<uNrLights ? FetchIndex(offs, l) : 0;
uLgtType = l<uNrLights ? g_vLightData[uIndex].uLightType : 0;
}
#if !defined(XBONE) && !defined(PLAYSTATION4)
//if(uLgtType>=MAX_TYPES) ++l;
if(uLgtType!=SPOT_LIGHT && uLgtType!=SPHERE_LIGHT) ++l;
#endif
}
return ints;
}
float3 OverlayHeatMap(uint uNumLights, float3 c)
{
/////////////////////////////////////////////////////////////////////
//
const float4 kRadarColors[12] =
{
float4(0.0,0.0,0.0,0.0), // black
float4(0.0,0.0,0.6,0.5), // dark blue
float4(0.0,0.0,0.9,0.5), // blue
float4(0.0,0.6,0.9,0.5), // light blue
float4(0.0,0.9,0.9,0.5), // cyan
float4(0.0,0.9,0.6,0.5), // blueish green
float4(0.0,0.9,0.0,0.5), // green
float4(0.6,0.9,0.0,0.5), // yellowish green
float4(0.9,0.9,0.0,0.5), // yellow
float4(0.9,0.6,0.0,0.5), // orange
float4(0.9,0.0,0.0,0.5), // red
float4(1.0,0.0,0.0,0.9) // strong red
};
float fMaxNrLightsPerTile = 24;
int nColorIndex = uNumLights==0 ? 0 : (1 + (int) floor(10 * (log2((float)uNumLights) / log2(fMaxNrLightsPerTile))) );
nColorIndex = nColorIndex<0 ? 0 : nColorIndex;
float4 col = nColorIndex>11 ? float4(1.0,1.0,1.0,1.0) : kRadarColors[nColorIndex];
return lerp(c, pow(col.xyz, 2.2), 0.3*col.w);
}
ENDCG
}
}
Fallback Off
}