您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 

156 行
6.1 KiB

#ifndef LIGHTWEIGHT_LIGHTING_INCLUDED
#define LIGHTWEIGHT_LIGHTING_INCLUDED
#define PI 3.14159265359f
// Based on Minimalist CookTorrance BRDF
// Implementation is slightly different from original derivation: http://www.thetenthplanet.de/archives/255
//
// * NDF [Modified] GGX
// * Modified Kelemen and Szirmay-​Kalos for Visibility term
// * Fresnel approximated with 1/LdotH
half3 LightweightBDRF(BRDFData brdfData, half roughness2, half3 normal, half3 lightDirection, half3 viewDir)
{
#ifndef _SPECULARHIGHLIGHTS_OFF
half3 halfDir = Unity_SafeNormalize(lightDirection + viewDir);
half NoH = saturate(dot(normal, halfDir));
half LoH = saturate(dot(lightDirection, halfDir));
// GGX Distribution multiplied by combined approximation of Visibility and Fresnel
// See "Optimizing PBR for Mobile" from Siggraph 2015 moving mobile graphics course
// https://community.arm.com/events/1155
half d = NoH * NoH * (roughness2 - 1.h) + 1.00001h;
half LoH2 = LoH * LoH;
half specularTerm = roughness2 / ((d * d) * max(0.1h, LoH2) * (brdfData.roughness + 0.5h) * 4);
// on mobiles (where half actually means something) denominator have risk of overflow
// clamp below was added specifically to "fix" that, but dx compiler (we convert bytecode to metal/gles)
// sees that specularTerm have only non-negative terms, so it skips max(0,..) in clamp (leaving only min(100,...))
#if defined (SHADER_API_MOBILE)
specularTerm = specularTerm - 1e-4h;
#endif
#if defined (SHADER_API_MOBILE)
specularTerm = clamp(specularTerm, 0.0, 100.0); // Prevent FP16 overflow on mobiles
#endif
half3 color = specularTerm * brdfData.specular + brdfData.diffuse;
return color;
#else
return brdfData.diffuse;
#endif
}
half3 LightweightBRDFIndirect(BRDFData brdfData, UnityIndirect indirect, half roughness2, half fresnelTerm)
{
half3 c = indirect.diffuse * brdfData.diffuse;
float surfaceReduction = 1.0 / (roughness2 + 1.0);
c += surfaceReduction * indirect.specular * lerp(brdfData.specular, brdfData.grazingTerm, fresnelTerm);
return c;
}
UnityIndirect LightweightGI(float2 lightmapUV, half3 ambientColor, half3 normalWorld, half3 reflectVec, half occlusion, half perceptualRoughness)
{
UnityIndirect o = (UnityIndirect)0;
#ifdef LIGHTMAP_ON
ambientColor = (DecodeLightmap(UNITY_SAMPLE_TEX2D(unity_Lightmap, lightmapUV)));
#else
ambientColor += SHEvalLinearL0L1(half4(normalWorld, 1.0));
ambientColor = max(half3(0.0, 0.0, 0.0), ambientColor);
#endif
o.diffuse = ambientColor * occlusion;
#ifndef _GLOSSYREFLECTIONS_OFF
Unity_GlossyEnvironmentData g;
g.roughness = perceptualRoughness;
g.reflUVW = reflectVec;
o.specular = Unity_GlossyEnvironment(UNITY_PASS_TEXCUBE(unity_SpecCube0), unity_SpecCube0_HDR, g) * occlusion;
#else
o.specular = _GlossyEnvironmentColor * occlusion;
#endif
return o;
}
inline half ComputeLightAttenuationVertex(LightInput lightInput, half3 normal, float3 worldPos, out half3 lightDirection)
{
float4 attenuationParams = lightInput.atten;
float3 posToLightVec = lightInput.pos - worldPos;
float distanceSqr = max(dot(posToLightVec, posToLightVec), 0.001);
//// attenuationParams.z = kQuadFallOff = (25.0) / (lightRange * lightRange)
//// attenuationParams.w = lightRange * lightRange
//// TODO: we can precompute 1.0 / (attenuationParams.w * 0.64 - attenuationParams.w)
//// falloff is computed from 80% light range squared
float lightAtten = half(1.0 / (1.0 + distanceSqr * attenuationParams.z));
// normalized light dir
lightDirection = half3(posToLightVec * rsqrt(distanceSqr));
#if !(defined(_SINGLE_POINT_LIGHT) || defined(_SINGLE_DIRECTIONAL_LIGHT))
half SdotL = saturate(dot(lightInput.spotDir.xyz, lightDirection));
lightAtten *= saturate((SdotL - attenuationParams.x) / attenuationParams.y);
#endif
return half(lightAtten);
}
inline half ComputeLightAttenuation(LightInput lightInput, half3 normal, float3 worldPos, out half3 lightDirection)
{
float4 attenuationParams = lightInput.atten;
#ifdef _SINGLE_DIRECTIONAL_LIGHT
// Light pos holds normalized light dir
lightDirection = lightInput.pos;
return 1.0;
#else
float3 posToLightVec = lightInput.pos.xyz - worldPos * lightInput.pos.w;
float distanceSqr = max(dot(posToLightVec, posToLightVec), 0.001);
// TODO: Test separating dir lights into diff loop by sorting on the pipe and setting -1 on LightIndexMap.
#ifdef _ATTENUATION_TEXTURE
float u = (distanceSqr * attenuationParams.z) / attenuationParams.w;
float lightAtten = tex2D(_AttenuationTexture, float2(u, 0.0)).a;
#else
//// attenuationParams.z = kQuadFallOff = (25.0) / (lightRange * lightRange)
//// attenuationParams.w = lightRange * lightRange
//// TODO: we can precompute 1.0 / (attenuationParams.w * 0.64 - attenuationParams.w)
//// falloff is computed from 80% light range squared
float lightAtten = half(1.0 / (1.0 + distanceSqr * attenuationParams.z));
float falloff = saturate((distanceSqr - attenuationParams.w) / (attenuationParams.w * 0.64 - attenuationParams.w));
lightAtten *= half(falloff);
#endif
// normalized light dir
lightDirection = half3(posToLightVec * rsqrt(distanceSqr));
#ifndef _SINGLE_POINT_LIGHT
half SdotL = saturate(dot(lightInput.spotDir.xyz, lightDirection));
lightAtten *= saturate((SdotL - attenuationParams.x) / attenuationParams.y);
#endif
return half(lightAtten);
#endif // _SINGLE_DIRECTIONAL_LIGHT
}
inline half3 LightingLambert(half3 diffuseColor, half3 lightDir, half3 normal, half atten)
{
half NdotL = saturate(dot(normal, lightDir));
return diffuseColor * (NdotL * atten);
}
inline half3 LightingBlinnPhong(half3 diffuseColor, half4 specularGloss, half3 lightDir, half3 normal, half3 viewDir, half atten)
{
half NdotL = saturate(dot(normal, lightDir));
half3 diffuse = diffuseColor * NdotL;
half3 halfVec = normalize(lightDir + viewDir);
half NdotH = saturate(dot(normal, halfVec));
half3 specular = specularGloss.rgb * pow(NdotH, _Shininess * 128.0) * specularGloss.a;
return (diffuse + specular) * atten;
}
#endif