您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
176 行
6.3 KiB
176 行
6.3 KiB
#ifndef UNITY_COMMON_MATERIAL_INCLUDED
|
|
#define UNITY_COMMON_MATERIAL_INCLUDED
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Helper functions for roughness
|
|
//-----------------------------------------------------------------------------
|
|
|
|
real PerceptualRoughnessToRoughness(real perceptualRoughness)
|
|
{
|
|
return perceptualRoughness * perceptualRoughness;
|
|
}
|
|
|
|
real RoughnessToPerceptualRoughness(real roughness)
|
|
{
|
|
return sqrt(roughness);
|
|
}
|
|
|
|
real PerceptualSmoothnessToRoughness(real perceptualSmoothness)
|
|
{
|
|
return (1.0 - perceptualSmoothness) * (1.0 - perceptualSmoothness);
|
|
}
|
|
|
|
real PerceptualSmoothnessToPerceptualRoughness(real perceptualSmoothness)
|
|
{
|
|
return (1.0 - perceptualSmoothness);
|
|
}
|
|
|
|
// Using roughness values of 0 leads to INFs and NANs. The only sensible place to use the roughness
|
|
// value of 0 is IBL, so we do not modify the perceptual roughness which is used to select the MIP map level.
|
|
// Note: making the constant too small results in aliasing.
|
|
real ClampRoughnessForAnalyticalLights(real roughness)
|
|
{
|
|
return max(roughness, 1.0/1024.0);
|
|
}
|
|
|
|
void ConvertAnisotropyToRoughness(real perceptualRoughness, real anisotropy, out real roughnessT, out real roughnessB)
|
|
{
|
|
real roughness = PerceptualRoughnessToRoughness(perceptualRoughness);
|
|
|
|
// Use the parametrization of Sony Imageworks.
|
|
// Ref: Revisiting Physically Based Shading at Imageworks, p. 15.
|
|
roughnessT = roughness * (1 + anisotropy);
|
|
roughnessB = roughness * (1 - anisotropy);
|
|
}
|
|
|
|
// Same as ConvertAnisotropyToRoughness but
|
|
// roughnessT and roughnessB are clamped, and are meant to be used with punctual and directional lights.
|
|
void ConvertAnisotropyToClampRoughness(real perceptualRoughness, real anisotropy, out real roughnessT, out real roughnessB)
|
|
{
|
|
ConvertAnisotropyToRoughness(perceptualRoughness, anisotropy, roughnessT, roughnessB);
|
|
|
|
roughnessT = ClampRoughnessForAnalyticalLights(roughnessT);
|
|
roughnessB = ClampRoughnessForAnalyticalLights(roughnessB);
|
|
}
|
|
|
|
// Use with stack BRDF (clear coat / coat)
|
|
real roughnessToVariance(real roughness)
|
|
{
|
|
return 2.0 / Sq(roughness) - 2.0;
|
|
}
|
|
|
|
real varianceToRoughness(real variance)
|
|
{
|
|
return sqrt(2.0 / (variance + 2.0));
|
|
}
|
|
|
|
// ior is a value between 1.0 and 2.5
|
|
// Assume air interface for top
|
|
real IORToFresnel0(real ior)
|
|
{
|
|
return Sq((ior - 1.0) / (ior + 1.0));
|
|
}
|
|
|
|
real IORToFresnel0(real baseIor, real topIor)
|
|
{
|
|
return Sq((baseIor - topIor) / (baseIor + topIor));
|
|
}
|
|
|
|
// Assume air interface for top
|
|
real Fresnel0ToIor(real fresnel0)
|
|
{
|
|
real sqrtF0 = sqrt(fresnel0);
|
|
return (1.0 + sqrtF0) / (1.0 - sqrtF0);
|
|
}
|
|
|
|
// This function is a coarse approximation of computing fresnel0 for a different top than air (here clear coat of IOR 1.5) when we only have fresnel0 with air interface
|
|
// This function is equivalent to IORToFresnel0(Fresnel0ToIor(fresnel0), 1.5)
|
|
// mean
|
|
// real sqrtF0 = sqrt(fresnel0);
|
|
// return Sq(1.0 - 5.0 * sqrtF0) / Sq(5.0 - sqrtF0);
|
|
// Optimization: Fit of the function (3 mad) for range 0.04 (should return 0), 1 (should return 1)
|
|
// return saturate(-0.0256868 + fresnel0 * (0.326846 + (0.978946 - 0.283835 * fresnel0) * fresnel0));
|
|
TEMPLATE_1_REAL(Fresnel0ReajustFor15, fresnel0, return saturate(-0.0256868 + fresnel0 * (0.326846 + (0.978946 - 0.283835 * fresnel0) * fresnel0)) )
|
|
|
|
// same as regular refract except there is not the test for total internal reflection + the vector is flipped for processing
|
|
real3 CoatRefract(real3 X, real3 N, real ieta)
|
|
{
|
|
real XdotN = saturate(dot(N, X));
|
|
return ieta * X + (sqrt(1 + ieta * ieta * (XdotN * XdotN - 1)) - ieta * XdotN) * N;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Parallax mapping
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// ref https://www.gamedev.net/topic/678043-how-to-blend-world-space-normals/#entry5287707
|
|
// assume compositing in world space
|
|
// Note: Using vtxNormal = real3(0, 0, 1) give the BlendNormalRNM formulation.
|
|
// TODO: Untested
|
|
real3 BlendNormalWorldspaceRNM(real3 n1, real3 n2, real3 vtxNormal)
|
|
{
|
|
// Build the shortest-arc quaternion
|
|
real4 q = real4(cross(vtxNormal, n2), dot(vtxNormal, n2) + 1.0) / sqrt(2.0 * (dot(vtxNormal, n2) + 1));
|
|
|
|
// Rotate the normal
|
|
return n1 * (q.w * q.w - dot(q.xyz, q.xyz)) + 2 * q.xyz * dot(q.xyz, n1) + 2 * q.w * cross(q.xyz, n1);
|
|
}
|
|
|
|
// ref http://blog.selfshadow.com/publications/blending-in-detail/
|
|
// ref https://gist.github.com/selfshadow/8048308
|
|
// Reoriented Normal Mapping
|
|
// Blending when n1 and n2 are already 'unpacked' and normalised
|
|
// assume compositing in tangent space
|
|
real3 BlendNormalRNM(real3 n1, real3 n2)
|
|
{
|
|
real3 t = n1.xyz + real3(0.0, 0.0, 1.0);
|
|
real3 u = n2.xyz * real3(-1.0, -1.0, 1.0);
|
|
real3 r = (t / t.z) * dot(t, u) - u;
|
|
return r;
|
|
}
|
|
|
|
// assume compositing in tangent space
|
|
real3 BlendNormal(real3 n1, real3 n2)
|
|
{
|
|
return normalize(real3(n1.xy * n2.z + n2.xy * n1.z, n1.z * n2.z));
|
|
}
|
|
|
|
// Ref: http://http.developer.nvidia.com/GPUGems3/gpugems3_ch01.html / http://www.slideshare.net/icastano/cascades-demo-secrets
|
|
real3 ComputeTriplanarWeights(real3 normal)
|
|
{
|
|
// Determine the blend weights for the 3 planar projections.
|
|
real3 blendWeights = abs(normal);
|
|
// Tighten up the blending zone
|
|
blendWeights = (blendWeights - 0.2) * 7.0;
|
|
blendWeights = blendWeights * blendWeights * blendWeights; // pow(blendWeights, 3);
|
|
// Force weights to sum to 1.0 (very important!)
|
|
blendWeights = max(blendWeights, real3(0.0, 0.0, 0.0));
|
|
blendWeights /= dot(blendWeights, 1.0);
|
|
|
|
return blendWeights;
|
|
}
|
|
|
|
// Planar/Triplanar convention for Unity in world space
|
|
void GetTriplanarCoordinate(float3 position, out float2 uvXZ, out float2 uvXY, out float2 uvZY)
|
|
{
|
|
// Caution: This must follow the same rule as what is use for SurfaceGradient triplanar
|
|
// TODO: Currently the normal mapping looks wrong without SURFACE_GRADIENT option because we don't handle corretly the tangent space
|
|
uvXZ = float2(position.z, position.x);
|
|
uvXY = float2(position.x, position.y);
|
|
uvZY = float2(position.z, position.y);
|
|
}
|
|
|
|
real LerpWhiteTo(real b, real t)
|
|
{
|
|
real oneMinusT = 1.0 - t;
|
|
return oneMinusT + b * t;
|
|
}
|
|
|
|
real3 LerpWhiteTo(real3 b, real t)
|
|
{
|
|
real oneMinusT = 1.0 - t;
|
|
return real3(oneMinusT, oneMinusT, oneMinusT) + b * t;
|
|
}
|
|
|
|
|
|
#endif // UNITY_COMMON_MATERIAL_INCLUDED
|