您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 

441 行
14 KiB

// Shader targeted for LowEnd mobile devices. Single Pass Forward Rendering. Shader Model 2
Shader "LowEndMobilePipeline/Specular"
{
// Keep properties of StandardSpecular shader for upgrade reasons.
Properties
{
_Color("Color", Color) = (1,1,1,1)
_MainTex("Base (RGB) Glossiness / Alpha (A)", 2D) = "white" {}
_Cutoff("Alpha Cutoff", Range(0.0, 1.0)) = 0.5
_Glossiness("Shininess", Range(0.0, 1.0)) = 0.5
_SpecularStrength("Specular Strength", Range(0.0, 255.0)) = 200
_GlossMapScale("Smoothness Factor", Range(0.0, 1.0)) = 1.0
[Enum(Specular Alpha,0,Albedo Alpha,1)] _SmoothnessTextureChannel("Smoothness texture channel", Float) = 0
[HideInInspector] _SpecSource("Specular Color Source", Float) = 0.0
_SpecColor("Specular", Color) = (1.0, 1.0, 1.0)
_SpecGlossMap("Specular", 2D) = "white" {}
[HideInInspector] _GlossinessSource("Glossiness Source", Float) = 0.0
[ToggleOff] _SpecularHighlights("Specular Highlights", Float) = 1.0
[ToggleOff] _GlossyReflections("Glossy Reflections", Float) = 1.0
[HideInInspector] _BumpScale("Scale", Float) = 1.0
[NoScaleOffset] _BumpMap("Normal Map", 2D) = "bump" {}
_Parallax("Height Scale", Range(0.005, 0.08)) = 0.02
_ParallaxMap("Height Map", 2D) = "black" {}
_OcclusionStrength("Strength", Range(0.0, 1.0)) = 1.0
_OcclusionMap("Occlusion", 2D) = "white" {}
_EmissionColor("Emission Color", Color) = (0,0,0)
_EmissionMap("Emission", 2D) = "white" {}
_DetailMask("Detail Mask", 2D) = "white" {}
_DetailAlbedoMap("Detail Albedo x2", 2D) = "grey" {}
_DetailNormalMapScale("Scale", Float) = 1.0
_DetailNormalMap("Normal Map", 2D) = "bump" {}
[Enum(UV0,0,UV1,1)] _UVSec("UV Set for secondary textures", Float) = 0
// Blending state
[HideInInspector] _Mode("__mode", Float) = 0.0
[HideInInspector] _SrcBlend("__src", Float) = 1.0
[HideInInspector] _DstBlend("__dst", Float) = 0.0
[HideInInspector] _ZWrite("__zw", Float) = 1.0
}
SubShader
{
Tags { "RenderType" = "Opaque" "RenderPipeline" = "LowEndMobilePipeline" }
LOD 300
Pass
{
Name "LD_SINGLE_PASS_FORWARD"
Tags { "LightMode" = "LowEndMobileForward" }
// Use same blending / depth states as Standard shader
Blend[_SrcBlend][_DstBlend]
ZWrite[_ZWrite]
CGPROGRAM
#pragma target 2.0
#pragma vertex vert
#pragma fragment frag
#pragma shader_feature _ _ALPHATEST_ON _ALPHABLEND_ON
#pragma shader_feature _ _SHARED_SPECULAR_DIFFUSE _SPECGLOSSMAP _SPECULAR_COLOR
#pragma shader_feature _GLOSSINESS_FROM_BASE_ALPHA
#pragma shader_feature _NORMALMAP
#pragma multi_compile _ LIGHTMAP_ON
#pragma multi_compile _ HARD_SHADOWS SOFT_SHADOWS
#pragma multi_compile_fog
#pragma only_renderers d3d9 d3d11 d3d11_9x glcore gles gles3 metal
#pragma enable_d3d11_debug_symbols
#include "UnityCG.cginc"
#include "UnityStandardBRDF.cginc"
#include "UnityStandardInput.cginc"
#include "UnityStandardUtils.cginc"
#define DEBUG_CASCADES 0
#define MAX_SHADOW_CASCADES 4
#define MAX_LIGHTS 8
#define INITIALIZE_LIGHT(light, lightIndex) \
light.pos = globalLightPos[lightIndex]; \
light.color = globalLightColor[lightIndex]; \
light.atten = globalLightAtten[lightIndex]; \
light.spotDir = globalLightSpotDir[lightIndex]
// The variables are very similar to built-in unity_LightColor, unity_LightPosition,
// unity_LightAtten, unity_SpotDirection as used by the VertexLit shaders, except here
// we use world space positions instead of view space.
half4 globalLightColor[MAX_LIGHTS];
float4 globalLightPos[MAX_LIGHTS];
half4 globalLightSpotDir[MAX_LIGHTS];
half4 globalLightAtten[MAX_LIGHTS];
int4 globalLightCount; // x: pixelLightCount, y = totalLightCount (pixel + vert)
sampler2D_float _ShadowMap;
float _PCFKernel[8];
half4x4 _WorldToShadow[MAX_SHADOW_CASCADES];
half4 _PSSMDistancesAndShadowResolution; // xyz: PSSM Distance for 4 cascades, w: 1 / shadowmap resolution. Used for filtering
half _SpecularStrength;
struct LowendVertexInput
{
float4 vertex : POSITION;
float3 normal : NORMAL;
float4 tangent : TANGENT;
float3 texcoord : TEXCOORD0;
float2 lightmapUV : TEXCOORD1;
};
struct v2f
{
float4 uv01 : TEXCOORD0; // uv01.xy: uv0, uv01.zw: uv1
float4 posWS : TEXCOORD1; // xyz: posWorld, w: eyeZ
#if _NORMALMAP
half3 tangentToWorld[3] : TEXCOORD2; // tangentToWorld matrix
#else
half3 normal : TEXCOORD2;
#endif
half4 viewDir : TEXCOORD5; // xyz: viewDir
UNITY_FOG_COORDS_PACKED(6, half4) // x: fogCoord, yzw: vertexColor
float4 hpos : SV_POSITION;
};
struct LightInput
{
half4 pos;
half4 color;
half4 atten;
half4 spotDir;
};
inline half ComputeCascadeIndex(half eyeZ)
{
// PSSMDistance is set to infinity for non active cascades. This way the comparison for unavailable cascades will always be zero.
half3 cascadeCompare = step(_PSSMDistancesAndShadowResolution.xyz, half3(eyeZ, eyeZ, eyeZ));
return dot(cascadeCompare, cascadeCompare);
}
inline half ShadowAttenuation(half2 shadowCoord, half shadowCoordDepth)
{
half depth = tex2D(_ShadowMap, shadowCoord).r;
#if defined(UNITY_REVERSED_Z)
return step(depth, shadowCoordDepth);
#else
return step(shadowCoordDepth, depth);
#endif
}
inline half ShadowPCF(half4 shadowCoord)
{
// TODO: simulate textureGatherOffset not available, simulate it
half2 offset = half2(0, 0);
half attenuation = ShadowAttenuation(shadowCoord.xy + half2(_PCFKernel[0], _PCFKernel[1]) + offset, shadowCoord.z) +
ShadowAttenuation(shadowCoord.xy + half2(_PCFKernel[2], _PCFKernel[3]) + offset, shadowCoord.z) +
ShadowAttenuation(shadowCoord.xy + half2(_PCFKernel[4], _PCFKernel[5]) + offset, shadowCoord.z) +
ShadowAttenuation(shadowCoord.xy + half2(_PCFKernel[6], _PCFKernel[7]) + offset, shadowCoord.z);
return attenuation * 0.25;
}
inline half3 EvaluateOneLight(LightInput lightInput, half3 diffuseColor, half4 specularGloss, half3 normal, float3 posWorld, half3 viewDir)
{
float3 posToLight = lightInput.pos.xyz;
posToLight -= posWorld * lightInput.pos.w;
float distanceSqr = max(dot(posToLight, posToLight), 0.001);
float lightAtten = 1.0 / (1.0 + distanceSqr * lightInput.atten.z);
float3 lightDir = posToLight * rsqrt(distanceSqr);
float SdotL = saturate(dot(lightInput.spotDir.xyz, lightDir));
lightAtten *= saturate((SdotL - lightInput.atten.x) / lightInput.atten.y);
float cutoff = step(distanceSqr, lightInput.atten.w);
lightAtten *= cutoff;
float NdotL = saturate(dot(normal, lightDir));
half3 halfVec = normalize(lightDir + viewDir);
half NdotH = saturate(dot(normal, halfVec));
half3 lightColor = lightInput.color.rgb * lightAtten;
half3 diffuse = diffuseColor * lightColor * NdotL;
#if defined(_SHARED_SPECULAR_DIFFUSE) || defined(_SPECGLOSSMAP) || defined(_SPECULAR_COLOR)
half3 specular = specularGloss.rgb * lightColor * pow(NdotH, 256.0 - _SpecularStrength) * specularGloss.a;
return diffuse + specular;
#else
return diffuse;
#endif
}
inline half3 EvaluateMainLight(LightInput lightInput, half3 diffuseColor, half4 specularGloss, half3 normal, float4 posWorld, half3 viewDir)
{
half3 color = EvaluateOneLight(lightInput, diffuseColor, specularGloss, normal, posWorld, viewDir);
#if defined(HARD_SHADOWS) || defined(SOFT_SHADOWS)
int cascadeIndex = ComputeCascadeIndex(posWorld.w);
float4 shadowCoord = mul(_WorldToShadow[cascadeIndex], float4(posWorld.xyz, 1.0));
shadowCoord.z = saturate(shadowCoord.z);
#ifdef SOFT_SHADOWS
half shadowAttenuation = ShadowPCF(shadowCoord);
#else
half shadowAttenuation = ShadowAttenuation(shadowCoord.xy, shadowCoord.z);
#endif
#if DEBUG_CASCADES
half3 cascadeColors[MAX_SHADOW_CASCADES] = { half3(1.0, 0.0, 0.0), half3(0.0, 1.0, 0.0), half3(0.0, 0.0, 1.0), half3(1.0, 0.0, 1.0) };
return cascadeColors[cascadeIndex] * diffuseColor * max(shadowAttenuation, 0.5);
#endif
return color * shadowAttenuation;
#else
return color;
#endif
}
v2f vert(LowendVertexInput v)
{
v2f o;
UNITY_INITIALIZE_OUTPUT(v2f, o);
o.uv01.xy = TRANSFORM_TEX(v.texcoord, _MainTex);
o.uv01.zw = v.lightmapUV * unity_LightmapST.xy + unity_LightmapST.zw;
o.hpos = UnityObjectToClipPos(v.vertex);
o.posWS.xyz = mul(unity_ObjectToWorld, v.vertex).xyz;
o.posWS.w = -UnityObjectToViewPos(v.vertex).z;
o.viewDir.xyz = normalize(_WorldSpaceCameraPos - o.posWS.xyz);
half3 normal = normalize(UnityObjectToWorldNormal(v.normal));
#if _NORMALMAP
half sign = v.tangent.w * unity_WorldTransformParams.w;
half3 tangent = normalize(UnityObjectToWorldDir(v.tangent));
half3 binormal = cross(normal, tangent) * v.tangent.w;
// Initialize tangetToWorld in column-major to benefit from better glsl matrix multiplication code
o.tangentToWorld[0] = half3(tangent.x, binormal.x, normal.x);
o.tangentToWorld[1] = half3(tangent.y, binormal.y, normal.y);
o.tangentToWorld[2] = half3(tangent.z, binormal.z, normal.z);
#else
o.normal = normal;
#endif
half4 diffuseAndSpecular = half4(1.0, 1.0, 1.0, 1.0);
for (int lightIndex = globalLightCount.x; lightIndex < globalLightCount.y; ++lightIndex)
{
LightInput lightInput;
INITIALIZE_LIGHT(lightInput, lightIndex);
o.fogCoord.yzw += EvaluateOneLight(lightInput, diffuseAndSpecular.rgb, diffuseAndSpecular, normal, o.posWS.xyz, o.viewDir.xyz);
}
#ifndef LIGHTMAP_ON
o.fogCoord.yzw += max(half3(0, 0, 0), ShadeSH9(half4(normal, 1)));
#endif
UNITY_TRANSFER_FOG(o, o.hpos);
return o;
}
half4 frag(v2f i) : SV_Target
{
half4 diffuseAlpha = tex2D(_MainTex, i.uv01.xy);
half3 diffuse = diffuseAlpha.rgb * _Color.rgb;
half alpha = diffuseAlpha.a * _Color.a;
#ifdef _ALPHATEST_ON
clip(alpha - _Cutoff);
#endif
#if _NORMALMAP
half3 normalmap = UnpackNormal(tex2D(_BumpMap, i.uv01.xy));
// glsl compiler will generate underperforming code by using a row-major pre multiplication matrix: mul(normalmap, i.tangentToWorld)
// i.tangetToWorld was initialized as column-major in vs and here dot'ing individual for better performance.
// The code below is similar to post multiply: mul(i.tangentToWorld, normalmap)
half3 normal = half3(dot(normalmap, i.tangentToWorld[0]), dot(normalmap, i.tangentToWorld[1]), dot(normalmap, i.tangentToWorld[2]));
#else
half3 normal = normalize(i.normal);
#endif
half4 specularGloss;
#ifdef _SHARED_SPECULAR_DIFFUSE
specularGloss.rgb = diffuse;
specularGloss.a = alpha;
#elif defined(_SHARED_SPECULAR_DIFFUSE)
#if _GLOSSINESS_FROM_BASE_ALPHA
specularGloss.rgb = tex2D(_SpecGlossMap, i.uv01.xy) * _SpecColor;
specularGloss.a = alpha;
#else
specularGloss = tex2D(_SpecGlossMap, i.uv01.xy) * _SpecColor;
#endif
#else
#if _GLOSSINESS_FROM_BASE_ALPHA
specularGloss.rgb = _SpecColor;
specularGloss.a = alpha;
#else
specularGloss = _SpecColor;
#endif
#endif
float3 posWorld = i.posWS.xyz;
half3 viewDir = i.viewDir.xyz;
// Indirect Light Contribution
half3 indirectDiffuse;
#ifdef LIGHTMAP_ON
indirectDiffuse = DecodeLightmap(UNITY_SAMPLE_TEX2D(unity_Lightmap, i.uv01.zw)) * diffuse;
#else
indirectDiffuse = i.fogCoord.yzw * diffuse;
#endif
// Compute direct contribution from main directional light.
// Only a single directional shadow caster is supported.
LightInput mainLight;
INITIALIZE_LIGHT(mainLight, 0);
#if DEBUG_CASCADES
return half4(EvaluateMainLight(mainLight, diffuse, specularGloss, normal, i.posWS, viewDir), 1.0);
#endif
half3 directColor = EvaluateMainLight(mainLight, diffuse, specularGloss, normal, i.posWS, viewDir);
// Compute direct contribution from additional lights.
for (int lightIndex = 1; lightIndex < globalLightCount.x; ++lightIndex)
{
LightInput additionalLight;
INITIALIZE_LIGHT(additionalLight, lightIndex);
directColor += EvaluateOneLight(additionalLight, diffuse, specularGloss, normal, posWorld, viewDir);
}
half3 color = directColor + indirectDiffuse + _EmissionColor;
UNITY_APPLY_FOG(i.fogCoord, color);
#ifdef _ALPHABLEND_ON
return half4(color, alpha);
#else
return half4(color, 1);
#endif
};
ENDCG
}
Pass
{
Name "LD_SHADOW_CASTER"
Tags { "Lightmode" = "ShadowCaster" }
ZWrite On ZTest LEqual
CGPROGRAM
#pragma target 2.0
#pragma vertex vert
#pragma fragment frag
float4 _WorldLightDirAndBias;
#include "UnityCG.cginc"
struct VertexInput
{
float4 pos : POSITION;
float3 normal : NORMAL;
};
// Similar to UnityClipSpaceShadowCasterPos but using LDPipeline lightdir and bias and applying near plane clamp
float4 ClipSpaceShadowCasterPos(float4 vertex, float3 normal)
{
float4 wPos = mul(unity_ObjectToWorld, vertex);
if (_WorldLightDirAndBias.w > 0.0)
{
float3 wNormal = UnityObjectToWorldNormal(normal);
// apply normal offset bias (inset position along the normal)
// bias needs to be scaled by sine between normal and light direction
// (http://the-witness.net/news/2013/09/shadow-mapping-summary-part-1/)
//
// _WorldLightDirAndBias.w shadow bias defined in LRRenderPipeline asset
float shadowCos = dot(wNormal, _WorldLightDirAndBias.xyz);
float shadowSine = sqrt(1 - shadowCos*shadowCos);
float normalBias = _WorldLightDirAndBias.w * shadowSine;
wPos.xyz -= wNormal * normalBias;
}
float4 clipPos = mul(UNITY_MATRIX_VP, wPos);
#if defined(UNITY_REVERSED_Z)
clipPos.z = min(clipPos.z, UNITY_NEAR_CLIP_VALUE);
#else
clipPos.z = max(clipPos.z, UNITY_NEAR_CLIP_VALUE);
#endif
return clipPos;
}
float4 vert(VertexInput i) : SV_POSITION
{
return ClipSpaceShadowCasterPos(i.pos, i.normal);
}
half4 frag() : SV_TARGET
{
return 0;
}
ENDCG
}
// This pass it not used during regular rendering, only for lightmap baking.
Pass
{
Name "LD_META"
Tags{ "LightMode" = "Meta" }
Cull Off
CGPROGRAM
#pragma vertex vert_meta
#pragma fragment frag_meta
#pragma shader_feature _EMISSION
#pragma shader_feature _METALLICGLOSSMAP
#pragma shader_feature _ _SMOOTHNESS_TEXTURE_ALBEDO_CHANNEL_A
#pragma shader_feature ___ _DETAIL_MULX2
#pragma shader_feature EDITOR_VISUALIZATION
#include "UnityStandardMeta.cginc"
ENDCG
}
}
Fallback "Standard (Specular setup)"
CustomEditor "LowendMobilePipelineMaterialEditor"
}