您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 

473 行
18 KiB

#ifndef UNITY_STANDARD_FORWARD_MOBILE_INCLUDED
#define UNITY_STANDARD_FORWARD_MOBILE_INCLUDED
// NOTE: had to split shadow functions into separate file,
// otherwise compiler gives trouble with LIGHTING_COORDS macro (in UnityStandardCore.cginc)
#include "UnityStandardConfig.cginc"
#include "UnityStandardCore.cginc"
#include "OnTileShaderBase.h"
#include "../../fptl/LightDefinitions.cs.hlsl"
// todo: put this is LightDefinitions common file
#define MAX_LIGHTS 100
#define CUBEMAPFACE_POSITIVE_X 0
#define CUBEMAPFACE_NEGATIVE_X 1
#define CUBEMAPFACE_POSITIVE_Y 2
#define CUBEMAPFACE_NEGATIVE_Y 3
#define CUBEMAPFACE_POSITIVE_Z 4
#define CUBEMAPFACE_NEGATIVE_Z 5
#if defined(SHADER_API_D3D11)
# include "CoreRP/ShaderLibrary/API/D3D11.hlsl"
#elif defined(SHADER_API_PSSL)
# include "CoreRP/ShaderLibrary/API/PSSL.hlsl"
#elif defined(SHADER_API_XBOXONE)
# include "CoreRP/ShaderLibrary/API/D3D11.hlsl"
# include "CoreRP/ShaderLibrary/API/D3D11_1.hlsl"
#elif defined(SHADER_API_METAL)
# include "ShaderLibrary/API/Metal.hlsl"
#else
# error unsupported shader api
#endif
#include "CoreRP/ShaderLibrary/API/Validate.hlsl"
#include "Shadow.hlsl"
struct VertexOutputForwardNew
{
float4 pos : SV_POSITION;
float4 tex : TEXCOORD0;
half4 ambientOrLightmapUV : TEXCOORD1; // SH or Lightmap UV
half4 tangentToWorldAndParallax[3] : TEXCOORD2; // [3x3:tangentToWorld | 1x3:empty]
float4 posWorld : TEXCOORD8;
float4 posView : TEXCOORD9;
LIGHTING_COORDS(5,6)
UNITY_FOG_COORDS(7)
UNITY_VERTEX_INPUT_INSTANCE_ID
UNITY_VERTEX_OUTPUT_STEREO
};
VertexOutputForwardNew vertForward(VertexInput v)
{
UNITY_SETUP_INSTANCE_ID(v);
VertexOutputForwardNew o;
UNITY_INITIALIZE_OUTPUT(VertexOutputForwardNew, o);
UNITY_TRANSFER_INSTANCE_ID(v, o);
UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(o);
float4 posWorld = mul(unity_ObjectToWorld, v.vertex);
o.posWorld = posWorld;
o.posView = mul(unity_WorldToCamera, posWorld);
o.pos = UnityObjectToClipPos(v.vertex);
o.tex = TexCoords(v);
float3 normalWorld = UnityObjectToWorldNormal(v.normal);
#ifdef _TANGENT_TO_WORLD
float4 tangentWorld = float4(UnityObjectToWorldDir(v.tangent.xyz), v.tangent.w);
float3x3 tangentToWorld = CreateTangentToWorldPerVertex(normalWorld, tangentWorld.xyz, tangentWorld.w);
o.tangentToWorldAndParallax[0].xyz = tangentToWorld[0];
o.tangentToWorldAndParallax[1].xyz = tangentToWorld[1];
o.tangentToWorldAndParallax[2].xyz = tangentToWorld[2];
#else
o.tangentToWorldAndParallax[0].xyz = 0;
o.tangentToWorldAndParallax[1].xyz = 0;
o.tangentToWorldAndParallax[2].xyz = normalWorld;
#endif
o.ambientOrLightmapUV = VertexGIForward(v, posWorld, normalWorld);
UNITY_TRANSFER_FOG(o,o.pos);
return o;
}
#define USE_LEFTHAND_CAMERASPACE (0)
#define DIRECT_LIGHT (0)
#define REFLECTION_LIGHT (1)
#define SPOT_LIGHT (0)
#define SPHERE_LIGHT (1)
#define BOX_LIGHT (2)
#define DIRECTIONAL_LIGHT (3)
float4 gPerLightData[MAX_LIGHTS];
half4 gLightColor[MAX_LIGHTS];
float4 gLightPos[MAX_LIGHTS];
half4 gLightDirection[MAX_LIGHTS];
float4x4 gLightMatrix[MAX_LIGHTS];
float4x4 gWorldToLightMatrix[MAX_LIGHTS];
float4 gLightData;
int g_numLights;
int g_numReflectionProbes;
int _useLegacyCookies;
int _transparencyShadows;
float4x4 g_mViewToWorld;
float4x4 g_mWorldToView; // used for reflection only
float4x4 g_mScrProjection;
float4x4 g_mInvScrProjection;
sampler2D _LightTextureB0;
UNITY_DECLARE_TEX2DARRAY(_spotCookieTextures);
UNITY_DECLARE_ABSTRACT_CUBE_ARRAY(_pointCookieTextures);
static FragmentCommonData gdata;
static float occlusion;
// reflections
UNITY_DECLARE_ABSTRACT_CUBE_ARRAY(_reflCubeTextures);
UNITY_DECLARE_TEXCUBE(_reflRootCubeTexture);
uniform float _reflRootHdrDecodeMult;
uniform float _reflRootHdrDecodeExp;
StructuredBuffer<SFiniteLightData> g_vProbeData;
// ---- Utilities ---- //
void GetCountAndStart(out uint start, out uint nrLights, uint model)
{
start = model==REFLECTION_LIGHT ? g_numLights : 0; // offset by numLights entries
nrLights = model==REFLECTION_LIGHT ? g_numReflectionProbes : g_numLights;
}
// ---- Reflections ---- //
half3 Unity_GlossyEnvironment (UNITY_ARGS_ABSTRACT_CUBE_ARRAY(tex), int sliceIndex, half4 hdr, Unity_GlossyEnvironmentData glossIn);
half3 distanceFromAABB(half3 p, half3 aabbMin, half3 aabbMax)
{
return max(max(p - aabbMax, aabbMin - p), half3(0.0, 0.0, 0.0));
}
float3 EvalIndirectSpecular(UnityLight light, UnityIndirect ind)
{
return occlusion * UNITY_BRDF_PBS(gdata.diffColor, gdata.specColor, gdata.oneMinusReflectivity, gdata.smoothness, gdata.normalWorld, -gdata.eyeVec, light, ind);
}
float3 RenderReflectionList(uint start, uint numReflProbes, float3 vP, float3 vNw, float3 Vworld, float smoothness)
{
float3 worldNormalRefl = reflect(-Vworld, vNw);
float3 vspaceRefl = mul((float3x3) g_mWorldToView, worldNormalRefl).xyz;
float percRoughness = SmoothnessToPerceptualRoughness(smoothness);
UnityLight light;
light.color = 0;
light.dir = 0;
float3 ints = 0;
// root ibl begin
{
Unity_GlossyEnvironmentData g;
g.roughness = percRoughness;
g.reflUVW = worldNormalRefl;
half3 env0 = Unity_GlossyEnvironment(UNITY_PASS_TEXCUBE(_reflRootCubeTexture), float4(_reflRootHdrDecodeMult, _reflRootHdrDecodeExp, 0.0, 0.0), g);
//half3 env0 = Unity_GlossyEnvironment(UNITY_PASS_TEXCUBEARRAY(_reflCubeTextures), _reflRootSliceIndex, float4(_reflRootHdrDecodeMult, _reflRootHdrDecodeExp, 0.0, 0.0), g);
UnityIndirect ind;
ind.diffuse = 0;
ind.specular = env0;// * data.occlusion;
ints = EvalIndirectSpecular(light, ind);
}
// root ibl end
for (int uIndex=0; uIndex<gLightData.y; uIndex++)
{
SFiniteLightData lgtDat = g_vProbeData[uIndex];
float3 vLp = lgtDat.lightPos.xyz;
float3 vecToSurfPos = vP - vLp; // vector from reflection volume to surface position in camera space
float3 posInReflVolumeSpace = float3( dot(vecToSurfPos, lgtDat.lightAxisX), dot(vecToSurfPos, lgtDat.lightAxisY), dot(vecToSurfPos, lgtDat.lightAxisZ) );
float blendDistance = lgtDat.probeBlendDistance;//unity_SpecCube1_ProbePosition.w; // will be set to blend distance for this probe
float3 sampleDir;
if((lgtDat.flags&IS_BOX_PROJECTED)!=0)
{
// For box projection, use expanded bounds as they are rendered; otherwise
// box projection artifacts when outside of the box.
//float4 boxMin = unity_SpecCube0_BoxMin - float4(blendDistance,blendDistance,blendDistance,0);
//float4 boxMax = unity_SpecCube0_BoxMax + float4(blendDistance,blendDistance,blendDistance,0);
//sampleDir = BoxProjectedCubemapDirection (worldNormalRefl, worldPos, unity_SpecCube0_ProbePosition, boxMin, boxMax);
float4 boxOuterDistance = float4( lgtDat.boxInnerDist + float3(blendDistance, blendDistance, blendDistance), 0.0 );
#if 0
// if rotation is NOT supported
sampleDir = BoxProjectedCubemapDirection(worldNormalRefl, posInReflVolumeSpace, float4(lgtDat.localCubeCapturePoint, 1.0), -boxOuterDistance, boxOuterDistance);
#else
float3 volumeSpaceRefl = float3( dot(vspaceRefl, lgtDat.lightAxisX), dot(vspaceRefl, lgtDat.lightAxisY), dot(vspaceRefl, lgtDat.lightAxisZ) );
float3 vPR = BoxProjectedCubemapDirection(volumeSpaceRefl, posInReflVolumeSpace, float4(lgtDat.localCubeCapturePoint, 1.0), -boxOuterDistance, boxOuterDistance); // Volume space corrected reflection vector
sampleDir = mul( (float3x3) g_mViewToWorld, vPR.x*lgtDat.lightAxisX + vPR.y*lgtDat.lightAxisY + vPR.z*lgtDat.lightAxisZ );
#endif
}
else
sampleDir = worldNormalRefl;
Unity_GlossyEnvironmentData g;
g.roughness = percRoughness;
g.reflUVW = sampleDir;
half3 env0 = Unity_GlossyEnvironment(UNITY_PASS_ABSTRACT_CUBE_ARRAY(_reflCubeTextures), lgtDat.sliceIndex, float4(lgtDat.lightIntensity, lgtDat.decodeExp, 0.0, 0.0), g);
UnityIndirect ind;
ind.diffuse = 0;
ind.specular = env0;// * data.occlusion;
//half3 rgb = UNITY_BRDF_PBS(0, data.specularColor, oneMinusReflectivity, data.smoothness, data.normalWorld, vWSpaceVDir, light, ind).rgb;
half3 rgb = EvalIndirectSpecular(light, ind);
// Calculate falloff value, so reflections on the edges of the Volume would gradually blend to previous reflection.
// Also this ensures that pixels not located in the reflection Volume AABB won't
// accidentally pick up reflections from this Volume.
//half3 distance = distanceFromAABB(worldPos, unity_SpecCube0_BoxMin.xyz, unity_SpecCube0_BoxMax.xyz);
half3 distance = distanceFromAABB(posInReflVolumeSpace, -lgtDat.boxInnerDist, lgtDat.boxInnerDist);
half falloff = saturate(1.0 - length(distance)/blendDistance);
ints = lerp(ints, rgb, falloff);
}
return ints;
}
half3 Unity_GlossyEnvironment (UNITY_ARGS_ABSTRACT_CUBE_ARRAY(tex), int sliceIndex, half4 hdr, Unity_GlossyEnvironmentData glossIn)
{
#if UNITY_GLOSS_MATCHES_MARMOSET_TOOLBAG2 && (SHADER_TARGET >= 30)
// TODO: remove pow, store cubemap mips differently
half perceptualRoughness = pow(glossIn.roughness, 3.0/4.0);
#else
half perceptualRoughness = glossIn.roughness; // MM: switched to this
#endif
//perceptualRoughness = sqrt(sqrt(2/(64.0+2))); // spec power to the square root of real roughness
#if 0
float m = perceptualRoughness*perceptualRoughness; // m is the real roughness parameter
const float fEps = 1.192092896e-07F; // smallest such that 1.0+FLT_EPSILON != 1.0 (+1e-4h is NOT good here. is visibly very wrong)
float n = (2.0/max(fEps, m*m))-2.0; // remap to spec power. See eq. 21 in --> https://dl.dropboxusercontent.com/u/55891920/papers/mm_brdf.pdf
n /= 4; // remap from n_dot_h formulatino to n_dot_r. See section "Pre-convolved Cube Maps vs Path Tracers" --> https://s3.amazonaws.com/docs.knaldtech.com/knald/1.0.0/lys_power_drops.html
perceptualRoughness = pow( 2/(n+2), 0.25); // remap back to square root of real roughness
#else
// MM: came up with a surprisingly close approximation to what the #if 0'ed out code above does.
perceptualRoughness = perceptualRoughness*(1.7 - 0.7*perceptualRoughness);
#endif
half mip = perceptualRoughness * UNITY_SPECCUBE_LOD_STEPS;
half4 rgbm = UNITY_SAMPLE_ABSTRACT_CUBE_ARRAY_LOD(tex, float4(glossIn.reflUVW.xyz, sliceIndex), mip);
return DecodeHDR(rgbm, hdr);
}
float3 ExecuteReflectionList(out uint numReflectionProbesProcessed, uint2 pixCoord, float3 vP, float3 vNw, float3 Vworld, float smoothness)
{
uint start = 0, numReflectionProbes = 0;
GetCountAndStart(start, numReflectionProbes, REFLECTION_LIGHT);
numReflectionProbesProcessed = numReflectionProbes; // mainly for debugging/heat maps
return RenderReflectionList(start, numReflectionProbes, vP, vNw, Vworld, smoothness);
}
// ---- Lights ---- //
float3 EvalMaterial(UnityLight light, UnityIndirect ind)
{
return UNITY_BRDF_PBS(gdata.diffColor, gdata.specColor, gdata.oneMinusReflectivity, gdata.smoothness, gdata.normalWorld, -gdata.eyeVec, light, ind);
}
float3 RenderLightList(uint start, uint numLights, float3 vPw, float3 Vworld)
{
UnityIndirect ind;
UNITY_INITIALIZE_OUTPUT(UnityIndirect, ind);
ind.diffuse = 0;
ind.specular = 0;
ShadowContext shadowContext = InitShadowContext();
float3 ints = 0;
for (int lightIndex = 0; lightIndex < gLightData.x; ++lightIndex)
{
if (gPerLightData[lightIndex].x == DIRECTIONAL_LIGHT)
{
float atten = 1;
int shadowIdx = gPerLightData[lightIndex].y;
UNITY_BRANCH
if (shadowIdx >= 0 && _transparencyShadows)
{
float shadow = GetDirectionalShadowAttenuation(shadowContext, vPw, 0.0.xxx, shadowIdx, -gLightDirection[lightIndex].xyz);
atten *= shadow;
}
float4 cookieColor = float4(1,1,1,1);
float4 uvCookie = mul (gLightMatrix[lightIndex], float4(vPw,1));
float2 cookCoord = uvCookie.xy / uvCookie.w;
const bool bHasCookie = gPerLightData[lightIndex].z >= 0;
UNITY_BRANCH if(bHasCookie)
{
cookieColor = UNITY_SAMPLE_TEX2DARRAY_LOD(_spotCookieTextures, float3(cookCoord, gPerLightData[lightIndex].z), 0.0);
atten *= cookieColor.w;
}
UNITY_BRANCH if(_useLegacyCookies)
{
cookieColor.xyz = 1;
}
UnityLight light;
light.color.xyz = gLightColor[lightIndex].xyz*atten*cookieColor.xyz;
light.dir.xyz = -gLightDirection[lightIndex].xyz;
ints += EvalMaterial(light, ind);
}
else if (gPerLightData[lightIndex].x == SPHERE_LIGHT)
{
float3 vLp = gLightPos[lightIndex].xyz;
float3 toLight = vLp - vPw;
float dist = length(toLight);
float3 vLw = toLight / dist;
float att = dot(toLight, toLight) * gLightPos[lightIndex].w;
float atten = tex2D (_LightTextureB0, att.rr).UNITY_ATTEN_CHANNEL;
float4 cookieColor = float4(1,1,1,1);
const bool bHasCookie = gPerLightData[lightIndex].z >= 0;
UNITY_BRANCH if(bHasCookie)
{
float4 uvCookie = mul (gLightMatrix[lightIndex], float4(vLw,1));
float3 cookieCoord = -uvCookie.xyz / uvCookie.w;
cookieColor = UNITY_SAMPLE_ABSTRACT_CUBE_ARRAY_LOD(_pointCookieTextures, float4(cookieCoord, gPerLightData[lightIndex].z), 0.0);
atten *= cookieColor.w;
}
UNITY_BRANCH if(_useLegacyCookies)
{
cookieColor.xyz = 1;
}
int shadowIdx = gPerLightData[lightIndex].y;
UNITY_BRANCH
if (shadowIdx >= 0 && _transparencyShadows)
{
float shadow = GetPunctualShadowAttenuation(shadowContext, vPw, 0.0.xxx, shadowIdx, vLw, dist);
atten *= shadow;
}
UnityLight light;
light.color.xyz = gLightColor[lightIndex].xyz*atten*cookieColor.xyz;
light.dir.xyz = vLw;
ints += EvalMaterial(light, ind);
}
else if (gPerLightData[lightIndex].x == SPOT_LIGHT)
{
float3 vLp = gLightPos[lightIndex].xyz;
float3 toLight = vLp - vPw;
float dist = length(toLight);
float3 vLw = toLight / dist;
// distance atten
float att = dot(toLight, toLight) * gLightPos[lightIndex].w;
float atten = tex2Dlod (_LightTextureB0, float4(att.rr, 0.0, 0.0)).UNITY_ATTEN_CHANNEL;
float4 uvCookie = mul (gLightMatrix[lightIndex], float4(vPw,1));
float2 cookCoord = uvCookie.xy / uvCookie.w;
float d0 = 0.65;
float4 angularAtt = float4(1,1,1,smoothstep(0.0, 1.0-d0, 1.0-length(2*cookCoord-1)));
const bool bHasCookie = gPerLightData[lightIndex].z >= 0;
UNITY_BRANCH if(bHasCookie)
{
angularAtt = UNITY_SAMPLE_TEX2DARRAY_LOD(_spotCookieTextures, float3(cookCoord, gPerLightData[lightIndex].z), 0.0);
}
UNITY_BRANCH if(_useLegacyCookies)
{
angularAtt.xyz = 1;
}
atten *= angularAtt.w*(-uvCookie.w>0.0); // finally apply this to the dist att.
int shadowIdx = gPerLightData[lightIndex].y;
UNITY_BRANCH
if (shadowIdx >= 0 && _transparencyShadows)
{
float shadow = GetPunctualShadowAttenuation(shadowContext, vPw, 0.0.xxx, shadowIdx, vLw, dist);
atten *= shadow;
}
UnityLight light;
light.color.xyz = gLightColor[lightIndex].xyz*atten*angularAtt.xyz;
light.dir.xyz = vLw.xyz; //unity_CameraToWorld
ints += EvalMaterial(light, ind);
}
}
return ints;
}
float3 ExecuteLightList(out uint numLightsProcessed, uint2 pixCoord, float3 vPw, float3 Vworld)
{
uint start = 0, numLights = 0;
GetCountAndStart(start, numLights, DIRECT_LIGHT);
numLightsProcessed = numLights; // mainly for debugging/heat maps
return RenderLightList(start, numLights, vPw, Vworld);
}
// fragment shader main
half4 singlePassForward(VertexOutputForwardNew i)
{
// matching script side where camera space is right handed.
float3 vP = i.posView;
float3 vPw = i.posWorld;
float3 Vworld = normalize(_WorldSpaceCameraPos.xyz - vPw);
#ifdef _PARALLAXMAP
half3 tangent = i.tangentToWorldAndParallax[0].xyz;
half3 bitangent = i.tangentToWorldAndParallax[1].xyz;
half3 normal = i.tangentToWorldAndParallax[2].xyz;
float3 vDirForParallax = float3( dot(tangent, Vworld), dot(bitangent, Vworld), dot(normal, Vworld));
#else
float3 vDirForParallax = Vworld;
#endif
gdata = FragmentSetup(i.tex, -Vworld, vDirForParallax, i.tangentToWorldAndParallax, vPw); // eyeVec = -Vworld
uint2 pixCoord = ((uint2) i.pos.xy);
float atten = 1.0;
occlusion = Occlusion(i.tex.xy);
UnityGI gi = FragmentGI (gdata, occlusion, i.ambientOrLightmapUV, atten, DummyLight(), false);
uint numLightsProcessed = 0, numReflectionsProcessed = 0;
float3 res = 0;
// direct light contributions
res += ExecuteLightList(numLightsProcessed, pixCoord, vPw, Vworld);
// specular GI
res += ExecuteReflectionList(numReflectionsProcessed, pixCoord, vP, gdata.normalWorld, Vworld, gdata.smoothness);
// diffuse GI
res += UNITY_BRDF_PBS (gdata.diffColor, gdata.specColor, gdata.oneMinusReflectivity, gdata.smoothness, gdata.normalWorld, -gdata.eyeVec, gi.light, gi.indirect).xyz;
res += UNITY_BRDF_GI (gdata.diffColor, gdata.specColor, gdata.oneMinusReflectivity, gdata.smoothness, gdata.normalWorld, -gdata.eyeVec, occlusion, gi);
return OutputForward (float4(res,1.0), gdata.alpha);
}
#endif