您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
144 行
6.5 KiB
144 行
6.5 KiB
#ifndef __REFLECTIONTEMPLATE_H__
|
|
#define __REFLECTIONTEMPLATE_H__
|
|
|
|
#include "UnityCG.cginc"
|
|
#include "UnityStandardBRDF.cginc"
|
|
#include "UnityStandardUtils.cginc"
|
|
#include "UnityPBSLighting.cginc"
|
|
|
|
|
|
UNITY_DECLARE_TEXCUBEARRAY(_reflCubeTextures);
|
|
|
|
half3 Unity_GlossyEnvironment (UNITY_ARGS_TEXCUBEARRAY(tex), int sliceIndex, half4 hdr, Unity_GlossyEnvironmentData glossIn);
|
|
|
|
half3 distanceFromAABB(half3 p, half3 aabbMin, half3 aabbMax)
|
|
{
|
|
return max(max(p - aabbMax, aabbMin - p), half3(0.0, 0.0, 0.0));
|
|
}
|
|
|
|
|
|
float3 ExecuteReflectionList(uint start, uint numReflProbes, float3 vP, float3 vNw, float3 Vworld, float smoothness)
|
|
{
|
|
float3 worldNormalRefl = reflect(-Vworld, vNw);
|
|
|
|
float3 vspaceRefl = mul((float3x3) g_mWorldToView, worldNormalRefl).xyz;
|
|
|
|
float percRoughness = SmoothnessToPerceptualRoughness(smoothness);
|
|
|
|
UnityLight light;
|
|
light.color = 0;
|
|
light.dir = 0;
|
|
|
|
float3 ints = 0;
|
|
|
|
uint l=0;
|
|
// don't need the outer loop since the probes are sorted by volume type (currently one type in fact)
|
|
//while(l<numReflProbes)
|
|
if(numReflProbes>0)
|
|
{
|
|
uint uIndex = l<numReflProbes ? FetchIndex(start, l) : 0;
|
|
uint uLgtType = l<numReflProbes ? g_vLightData[uIndex].lightType : 0;
|
|
|
|
// specialized loop for sphere lights
|
|
while(l<numReflProbes && uLgtType==(uint) BOX_LIGHT)
|
|
{
|
|
SFiniteLightData lgtDat = g_vLightData[uIndex];
|
|
float3 vLp = lgtDat.lightPos.xyz;
|
|
float3 vecToSurfPos = vP - vLp; // vector from reflection volume to surface position in camera space
|
|
float3 posInReflVolumeSpace = float3( dot(vecToSurfPos, lgtDat.lightAxisX), dot(vecToSurfPos, lgtDat.lightAxisY), dot(vecToSurfPos, lgtDat.lightAxisZ) );
|
|
|
|
|
|
float blendDistance = lgtDat.probeBlendDistance;//unity_SpecCube1_ProbePosition.w; // will be set to blend distance for this probe
|
|
|
|
float3 sampleDir;
|
|
if((lgtDat.flags&IS_BOX_PROJECTED)!=0)
|
|
{
|
|
// For box projection, use expanded bounds as they are rendered; otherwise
|
|
// box projection artifacts when outside of the box.
|
|
//float4 boxMin = unity_SpecCube0_BoxMin - float4(blendDistance,blendDistance,blendDistance,0);
|
|
//float4 boxMax = unity_SpecCube0_BoxMax + float4(blendDistance,blendDistance,blendDistance,0);
|
|
//sampleDir = BoxProjectedCubemapDirection (worldNormalRefl, worldPos, unity_SpecCube0_ProbePosition, boxMin, boxMax);
|
|
|
|
float4 boxOuterDistance = float4( lgtDat.boxInnerDist + float3(blendDistance, blendDistance, blendDistance), 0.0 );
|
|
#if 0
|
|
// if rotation is NOT supported
|
|
sampleDir = BoxProjectedCubemapDirection(worldNormalRefl, posInReflVolumeSpace, float4(lgtDat.localCubeCapturePoint, 1.0), -boxOuterDistance, boxOuterDistance);
|
|
#else
|
|
float3 volumeSpaceRefl = float3( dot(vspaceRefl, lgtDat.lightAxisX), dot(vspaceRefl, lgtDat.lightAxisY), dot(vspaceRefl, lgtDat.lightAxisZ) );
|
|
float3 vPR = BoxProjectedCubemapDirection(volumeSpaceRefl, posInReflVolumeSpace, float4(lgtDat.localCubeCapturePoint, 1.0), -boxOuterDistance, boxOuterDistance); // Volume space corrected reflection vector
|
|
sampleDir = mul( (float3x3) g_mViewToWorld, vPR.x*lgtDat.lightAxisX + vPR.y*lgtDat.lightAxisY + vPR.z*lgtDat.lightAxisZ );
|
|
#endif
|
|
}
|
|
else
|
|
sampleDir = worldNormalRefl;
|
|
|
|
Unity_GlossyEnvironmentData g;
|
|
g.roughness = percRoughness;
|
|
g.reflUVW = sampleDir;
|
|
|
|
half3 env0 = Unity_GlossyEnvironment(UNITY_PASS_TEXCUBEARRAY(_reflCubeTextures), lgtDat.sliceIndex, float4(lgtDat.lightIntensity, lgtDat.decodeExp, 0.0, 0.0), g);
|
|
|
|
|
|
UnityIndirect ind;
|
|
ind.diffuse = 0;
|
|
ind.specular = env0;// * data.occlusion;
|
|
|
|
//half3 rgb = UNITY_BRDF_PBS(0, data.specularColor, oneMinusReflectivity, data.smoothness, data.normalWorld, vWSpaceVDir, light, ind).rgb;
|
|
half3 rgb = EvalIndirectSpecular(light, ind);
|
|
|
|
// Calculate falloff value, so reflections on the edges of the Volume would gradually blend to previous reflection.
|
|
// Also this ensures that pixels not located in the reflection Volume AABB won't
|
|
// accidentally pick up reflections from this Volume.
|
|
//half3 distance = distanceFromAABB(worldPos, unity_SpecCube0_BoxMin.xyz, unity_SpecCube0_BoxMax.xyz);
|
|
half3 distance = distanceFromAABB(posInReflVolumeSpace, -lgtDat.boxInnerDist, lgtDat.boxInnerDist);
|
|
half falloff = saturate(1.0 - length(distance)/blendDistance);
|
|
|
|
ints = lerp(ints, rgb, falloff);
|
|
|
|
// next probe
|
|
++l; uIndex = l<numReflProbes ? FetchIndex(start, l) : 0;
|
|
uLgtType = l<numReflProbes ? g_vLightData[uIndex].lightType : 0;
|
|
}
|
|
|
|
//if(uLgtType!=BOX_LIGHT) ++l;
|
|
}
|
|
|
|
return ints;
|
|
}
|
|
|
|
|
|
half3 Unity_GlossyEnvironment (UNITY_ARGS_TEXCUBEARRAY(tex), int sliceIndex, half4 hdr, Unity_GlossyEnvironmentData glossIn)
|
|
{
|
|
#if UNITY_GLOSS_MATCHES_MARMOSET_TOOLBAG2 && (SHADER_TARGET >= 30)
|
|
// TODO: remove pow, store cubemap mips differently
|
|
half perceptualRoughness = pow(glossIn.roughness, 3.0/4.0);
|
|
#else
|
|
half perceptualRoughness = glossIn.roughness; // MM: switched to this
|
|
#endif
|
|
//perceptualRoughness = sqrt(sqrt(2/(64.0+2))); // spec power to the square root of real roughness
|
|
|
|
#if 0
|
|
float m = perceptualRoughness*perceptualRoughness; // m is the real roughness parameter
|
|
const float fEps = 1.192092896e-07F; // smallest such that 1.0+FLT_EPSILON != 1.0 (+1e-4h is NOT good here. is visibly very wrong)
|
|
float n = (2.0/max(fEps, m*m))-2.0; // remap to spec power. See eq. 21 in --> https://dl.dropboxusercontent.com/u/55891920/papers/mm_brdf.pdf
|
|
|
|
n /= 4; // remap from n_dot_h formulatino to n_dot_r. See section "Pre-convolved Cube Maps vs Path Tracers" --> https://s3.amazonaws.com/docs.knaldtech.com/knald/1.0.0/lys_power_drops.html
|
|
|
|
perceptualRoughness = pow( 2/(n+2), 0.25); // remap back to square root of real roughness
|
|
#else
|
|
// MM: came up with a surprisingly close approximation to what the #if 0'ed out code above does.
|
|
perceptualRoughness = perceptualRoughness*(1.7 - 0.7*perceptualRoughness);
|
|
#endif
|
|
|
|
|
|
|
|
half mip = perceptualRoughness * UNITY_SPECCUBE_LOD_STEPS;
|
|
half4 rgbm = UNITY_SAMPLE_TEXCUBEARRAY_LOD(tex, float4(glossIn.reflUVW.xyz, sliceIndex), mip);
|
|
|
|
return DecodeHDR(rgbm, hdr);
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif
|