#define TESSELLATION_INTERPOLATE_BARY(name, bary) ouput.name = input0.name * bary.x + input1.name * bary.y + input2.name * bary.z // TODO: Move in geomtry.hlsl float3 ProjectPointOnPlane(float3 position, float3 planePosition, float3 planeNormal) { return position - (dot(position - planePosition, planeNormal) * planeNormal); } // p0, p1, p2 triangle world position // p0, p1, p2 triangle world vertex normal float3 PhongTessellation(float3 positionWS, float3 p0, float3 p1, float3 p2, float3 n0, float3 n1, float3 n2, float3 baryCoords, float shape) { float3 c0 = ProjectPointOnPlane(positionWS, p0, n0); float3 c1 = ProjectPointOnPlane(positionWS, p1, n1); float3 c2 = ProjectPointOnPlane(positionWS, p2, n2); float3 phongPositionWS = baryCoords.x * c0 + baryCoords.y * c1 + baryCoords.z * c2; return lerp(positionWS, phongPositionWS, shape); } // Reference: http://twvideo01.ubm-us.net/o1/vault/gdc10/slides/Bilodeau_Bill_Direct3D11TutorialTessellation.pdf // Return true if the triangle must be culled // backFaceCullEpsilon is the threshold of the dot product between view and normal ( < 0 mean we cull) bool BackFaceCullTriangle(float3 p0, float3 p1, float3 p2, float backFaceCullEpsilon, float3 cameraPosWS) { float3 edge0 = p1 - p0; float3 edge2 = p2 - p0; float3 N = normalize(cross(edge0, edge2)); float3 midpoint = (p0 + p1 + p2) / 3.0; float3 V = normalize(cameraPosWS - midpoint); return (dot(V, N) < backFaceCullEpsilon) ? true : false; } float2 GetScreenSpacePosition(float3 positionWS, float4x4 viewProjectionMatrix, float4 screenSize) { float4 positionCS = mul(viewProjectionMatrix, float4(positionWS, 1.0)); float2 positionSS = positionCS.xy / positionCS.w; // TODO: Check if we need to invert y return (positionSS * 0.5 + 0.5) * float2(screenSize.x, -screenSize.y); } // Compute both screen and distance based adaptation - return factor between 0 and 1 float3 GetScreenSpaceTessFactor(float3 p0, float3 p1, float3 p2, float4x4 viewProjectionMatrix, float4 screenSize, float triangleSize) { // Get screen space adaptive scale factor float2 edgeScreenPosition0 = GetScreenSpacePosition(p0, viewProjectionMatrix, screenSize); float2 edgeScreenPosition1 = GetScreenSpacePosition(p1, viewProjectionMatrix, screenSize); float2 edgeScreenPosition2 = GetScreenSpacePosition(p2, viewProjectionMatrix, screenSize); float EdgeScale = 1.0 / triangleSize; // Edge size in reality, but name is simpler float3 tessFactor; tessFactor.x = saturate(distance(edgeScreenPosition1, edgeScreenPosition2) * EdgeScale); tessFactor.y = saturate(distance(edgeScreenPosition0, edgeScreenPosition2) * EdgeScale); tessFactor.z = saturate(distance(edgeScreenPosition0, edgeScreenPosition1) * EdgeScale); return tessFactor; } float3 GetDistanceBasedTessFactor(float3 p0, float3 p1, float3 p2, float3 cameraPosWS, float tessMinDist, float tessMaxDist) { float3 edgePosition0 = 0.5 * (p1 + p2); float3 edgePosition1 = 0.5 * (p0 + p2); float3 edgePosition2 = 0.5 * (p0 + p1); // TODO: Move to camera relative and change distance to length float dist0 = distance(edgePosition0, cameraPosWS); float dist1 = distance(edgePosition1, cameraPosWS); float dist2 = distance(edgePosition2, cameraPosWS); // The saturate will handle the produced NaN in case min == max float fadeDist = tessMaxDist - tessMinDist; float3 tessFactor; tessFactor.x = saturate(1.0 - (dist0 - tessMinDist) / fadeDist); tessFactor.y = saturate(1.0 - (dist1 - tessMinDist) / fadeDist); tessFactor.z = saturate(1.0 - (dist2 - tessMinDist) / fadeDist); return tessFactor; } float4 CalcTriEdgeTessFactors(float3 triVertexFactors) { float4 tess; tess.x = triVertexFactors.x; tess.y = triVertexFactors.y; tess.z = triVertexFactors.z; tess.w = (triVertexFactors.x + triVertexFactors.y + triVertexFactors.z) / 3.0; return tess; } // TODO: Move in geomtry.hlsl float DistanceFromPlane(float3 pos, float4 plane) { float d = dot(float4(pos, 1.0), plane); return d; } // Returns true if triangle with given 3 world positions is outside of camera's view frustum. // cullEps is distance outside of frustum that is still considered to be inside (i.e. max displacement) bool WorldViewFrustumCull(float3 p0, float3 p1, float3 p2, float cullEps, float4 cameraWorldClipPlanes[4]) { float4 planeTest; // left planeTest.x = ((DistanceFromPlane(p0, cameraWorldClipPlanes[0]) > -cullEps) ? 1.0 : 0.0) + ((DistanceFromPlane(p1, cameraWorldClipPlanes[0]) > -cullEps) ? 1.0 : 0.0) + ((DistanceFromPlane(p2, cameraWorldClipPlanes[0]) > -cullEps) ? 1.0 : 0.0); // right planeTest.y = ((DistanceFromPlane(p0, cameraWorldClipPlanes[1]) > -cullEps) ? 1.0 : 0.0) + ((DistanceFromPlane(p1, cameraWorldClipPlanes[1]) > -cullEps) ? 1.0 : 0.0) + ((DistanceFromPlane(p2, cameraWorldClipPlanes[1]) > -cullEps) ? 1.0 : 0.0); // top planeTest.z = ((DistanceFromPlane(p0, cameraWorldClipPlanes[2]) > -cullEps) ? 1.0 : 0.0) + ((DistanceFromPlane(p1, cameraWorldClipPlanes[2]) > -cullEps) ? 1.0 : 0.0) + ((DistanceFromPlane(p2, cameraWorldClipPlanes[2]) > -cullEps) ? 1.0 : 0.0); // bottom planeTest.w = ((DistanceFromPlane(p0, cameraWorldClipPlanes[3]) > -cullEps) ? 1.0 : 0.0) + ((DistanceFromPlane(p1, cameraWorldClipPlanes[3]) > -cullEps) ? 1.0 : 0.0) + ((DistanceFromPlane(p2, cameraWorldClipPlanes[3]) > -cullEps) ? 1.0 : 0.0); // has to pass all 4 plane tests to be visible return !all(planeTest); }