//-------------------------------------------------------------------------------------------------- // Definitions //-------------------------------------------------------------------------------------------------- #pragma kernel VolumetricLightingAllLights VolumetricLighting=VolumetricLightingAllLights ENABLE_REPROJECTION=0 LIGHTLOOP_SINGLE_PASS #pragma kernel VolumetricLightingAllLightsReproj VolumetricLighting=VolumetricLightingAllLightsReproj ENABLE_REPROJECTION=1 LIGHTLOOP_SINGLE_PASS #pragma kernel VolumetricLightingClustered VolumetricLighting=VolumetricLightingClustered ENABLE_REPROJECTION=0 LIGHTLOOP_TILE_PASS USE_CLUSTERED_LIGHTLIST #pragma kernel VolumetricLightingClusteredReproj VolumetricLighting=VolumetricLightingClusteredReproj ENABLE_REPROJECTION=1 LIGHTLOOP_TILE_PASS USE_CLUSTERED_LIGHTLIST // #pragma enable_d3d11_debug_symbols #include "../../../ShaderPass/ShaderPass.cs.hlsl" #define SHADERPASS SHADERPASS_VOLUMETRIC_LIGHTING #include "../../../ShaderConfig.cs.hlsl" #if (SHADEROPTIONS_VOLUMETRIC_LIGHTING_PRESET == 1) // E.g. for 1080p: (1920/8)x(1080/8)x(128) = 4,147,200 voxels #define VBUFFER_TILE_SIZE 8 #define VBUFFER_SLICE_COUNT 64 #else // E.g. for 1080p: (1920/4)x(1080/4)x(256) = 33,177,600 voxels #define VBUFFER_TILE_SIZE 4 #define VBUFFER_SLICE_COUNT 128 #endif #define SUPPORT_ASYMMETRY 1 // Support asymmetric phase functions #define SUPPORT_PUNCTUAL_LIGHTS 1 // Punctual lights contribute to fog lighting #define GROUP_SIZE_1D 16 #define GROUP_SIZE_2D (GROUP_SIZE_1D * GROUP_SIZE_1D) //-------------------------------------------------------------------------------------------------- // Included headers //-------------------------------------------------------------------------------------------------- #include "CoreRP/ShaderLibrary/Common.hlsl" #include "CoreRP/ShaderLibrary/Filtering.hlsl" #include "CoreRP/ShaderLibrary/VolumeRendering.hlsl" #include "CoreRP/ShaderLibrary/SpaceFillingCurves.hlsl" #include "../../../ShaderVariables.hlsl" #include "../VolumetricLighting.cs.hlsl" #include "../VBuffer.hlsl" #define UNITY_MATERIAL_VOLUMETRIC // Define before including Lighting.hlsl and Material.hlsl #include "../../Lighting.hlsl" // Includes Material.hlsl #include "../../LightEvaluation.hlsl" //-------------------------------------------------------------------------------------------------- // Inputs & outputs //-------------------------------------------------------------------------------------------------- RW_TEXTURE3D(float4, _VBufferLightingIntegral); // RGB = radiance, A = optical depth RW_TEXTURE3D(float4, _VBufferLightingFeedback); // RGB = radiance, A = interval length TEXTURE3D(_VBufferLightingHistory); // RGB = radiance, A = interval length // TODO: avoid creating another Constant Buffer... CBUFFER_START(UnityVolumetricLighting) float4 _VBufferSampleOffset; // {x, y, z}, w = rendered frame count float4x4 _VBufferCoordToViewDirWS; // Actually just 3x3, but Unity can only set 4x4 float _CornetteShanksConstant; // CornetteShanksPhasePartConstant(_GlobalFog_Asymmetry) CBUFFER_END //-------------------------------------------------------------------------------------------------- // Implementation //-------------------------------------------------------------------------------------------------- struct DualRay { float3 originWS; float3 strataDirWS; // Normalized, tile-stratified float3 centerDirWS; // Normalized, tile-centered float strataDirInvViewZ; // 1 / ViewSpace(strataDirWS).z float twoDirRatioViewZ; // ViewSpace(strataDirWS).z / ViewSpace(centerDirWS).z }; // Returns a point along the stratified direction. float3 GetPointAtDistance(DualRay ray, float t) { return ray.originWS + t * ray.strataDirWS; } // Returns a point along the centered direction. It has a special property: // ViewSpace(GetPointAtDistance(ray, t)).z = ViewSpace(GetCenterAtDistance(ray, t)).z, // e.i. both points computed from the same value of 't' reside on the same Z-plane in the view space. float3 GetCenterAtDistance(DualRay ray, float t) { t *= ray.twoDirRatioViewZ; // Perform the Z-coordinate conversion return ray.originWS + t * ray.centerDirWS; } struct VoxelLighting { float3 radianceComplete; float3 radianceNoPhase; }; // Computes the light integral (in-scattered radiance) within the voxel. // Multiplication by the scattering coefficient and the phase function is performed outside. VoxelLighting EvaluateVoxelLighting(LightLoopContext context, uint featureFlags, PositionInputs posInput, float3 centerWS, DualRay ray, float t0, float t1, float dt, float rndVal, float extinction, float asymmetry #ifdef LIGHTLOOP_TILE_PASS , uint clusterIndices[2], float clusterDepths[2]) #else ) #endif { VoxelLighting lighting; ZERO_INITIALIZE(VoxelLighting, lighting); BakeLightingData unused; // Unused for now, so define once if (featureFlags & LIGHTFEATUREFLAGS_DIRECTIONAL) { float tOffset, weight; ImportanceSampleHomogeneousMedium(rndVal, extinction, dt, tOffset, weight); float t = t0 + tOffset; posInput.positionWS = GetPointAtDistance(ray, t); for (uint i = 0; i < _DirectionalLightCount; ++i) { // Fetch the light. DirectionalLightData light = _DirectionalLightDatas[i]; float3 L = -light.forward; // Lights point backwards in Unity float3 color; float attenuation; EvaluateLight_Directional(context, posInput, light, unused, 0, L, color, attenuation); // Important: // Ideally, all scattering calculations should use the stratified versions // of the sample position and the ray direction. However, correct reprojection // of asymmetrically scattered lighting (affected by an anisotropic phase // function) is not possible. We work around this issue by reprojecting // lighting not affected by the phase function. This basically removes // the phase function from the temporal integration process. It is a hack. // The downside is that asymmetry no longer benefits from temporal averaging, // and any temporal instability of asymmetry causes causes visible jitter. // In order to stabilize the image, we use the voxel center for all // asymmetry-related calculations. float cosTheta = dot(L, ray.centerDirWS); float phase = CornetteShanksPhasePartVarying(asymmetry, cosTheta); // Note: the 'weight' accounts for transmittance from 't0' to 't'. float intensity = attenuation * weight; // Compute the amount of in-scattered radiance. lighting.radianceNoPhase += intensity * color; lighting.radianceComplete += phase * intensity * color; } } #if (SUPPORT_PUNCTUAL_LIGHTS == 0) return lighting; #endif #ifdef LIGHTLOOP_TILE_PASS // Loop over 1 or 2 light clusters. int cluster = 0; do { float tMin = max(t0, ray.strataDirInvViewZ * clusterDepths[cluster]); float tMax = t1; if (cluster == 0 && (clusterIndices[0] != clusterIndices[1])) { tMax = min(t1, ray.strataDirInvViewZ * clusterDepths[1]); } #else float tMin = t0; float tMax = t1; #endif // LIGHTLOOP_TILE_PASS if (featureFlags & LIGHTFEATUREFLAGS_PUNCTUAL) { uint lightCount, lightStart; #ifdef LIGHTLOOP_TILE_PASS GetCountAndStartCluster(posInput.tileCoord, clusterIndices[cluster], LIGHTCATEGORY_PUNCTUAL, lightStart, lightCount); #else lightCount = _PunctualLightCount; lightStart = 0; #endif // LIGHTLOOP_TILE_PASS if (lightCount > 0) { LightData light = FetchLight(lightStart, 0); uint i = 0, last = lightCount - 1; // Box lights require special handling (see the next while loop). while (i <= last && light.lightType != GPULIGHTTYPE_PROJECTOR_BOX) { float tEntr = tMin; float tExit = tMax; bool sampleLight = true; // Perform ray-cone intersection for pyramid and spot lights. if (light.lightType != GPULIGHTTYPE_POINT) { float lenMul = 1; if (light.lightType == GPULIGHTTYPE_PROJECTOR_PYRAMID) { // 'light.right' and 'light.up' vectors are pre-scaled on the CPU // s.t. if you were to place them at the distance of 1 directly in front // of the light, they would give you the "footprint" of the light. // For spot lights, the cone fit is exact. // For pyramid lights, however, this is the "inscribed" cone // (contained within the pyramid), and we want to intersect // the "escribed" cone (which contains the pyramid). // Therefore, we have to scale the radii by the sqrt(2). lenMul = rsqrt(2); } float3 coneAxisX = lenMul * light.right; float3 coneAxisY = lenMul * light.up; sampleLight = IntersectRayCone(ray.originWS, ray.strataDirWS, light.positionWS, light.forward, coneAxisX, coneAxisY, tMin, tMax, tEntr, tExit); } if (sampleLight) { // We are unable to adequately sample features larger // than the half of the length of the integration interval // divided by the number of temporal samples (7). // Therefore, we apply this hack to reduce flickering. float hackMinDistSq = Sq(dt * (0.5 / 7)); float t, distSq, rcpPdf; ImportanceSamplePunctualLight(rndVal, light.positionWS, ray.originWS, ray.strataDirWS, tEntr, tExit, t, distSq, rcpPdf, hackMinDistSq); posInput.positionWS = GetPointAtDistance(ray, t); float3 lightToSample = posInput.positionWS - light.positionWS; float distRcp = rsqrt(distSq); float dist = distSq * distRcp; float distProj = dot(lightToSample, light.forward); float4 distances = float4(dist, distSq, distRcp, distProj); float3 L = -lightToSample * distRcp; float3 color; float attenuation; EvaluateLight_Punctual(context, posInput, light, unused, 0, L, lightToSample, distances, color, attenuation); // Important: // Ideally, all scattering calculations should use the stratified versions // of the sample position and the ray direction. However, correct reprojection // of asymmetrically scattered lighting (affected by an anisotropic phase // function) is not possible. We work around this issue by reprojecting // lighting not affected by the phase function. This basically removes // the phase function from the temporal integration process. It is a hack. // The downside is that asymmetry no longer benefits from temporal averaging, // and any temporal instability of asymmetry causes causes visible jitter. // In order to stabilize the image, we use the voxel center for all // asymmetry-related calculations. float3 centerL = light.positionWS - centerWS; float cosTheta = dot(centerL, ray.centerDirWS) * rsqrt(dot(centerL, centerL)); float phase = CornetteShanksPhasePartVarying(asymmetry, cosTheta); float intensity = attenuation * rcpPdf; // Compute transmittance from 't0' to 't'. intensity *= TransmittanceHomogeneousMedium(extinction, t - t0); // Compute the amount of in-scattered radiance. lighting.radianceNoPhase += intensity * color; lighting.radianceComplete += phase * intensity * color; } light = FetchLight(lightStart, min(++i, last)); } while (i <= last) // GPULIGHTTYPE_PROJECTOR_BOX { light = FetchLight(lightStart, min(++i, last)); light.lightType = GPULIGHTTYPE_PROJECTOR_BOX; // Convert the box light from OBB to AABB. // 'light.right' and 'light.up' vectors are pre-scaled on the CPU by (2/w) and (2/h). float3x3 rotMat = float3x3(light.right, light.up, light.forward); float3 o = mul(rotMat, ray.originWS - light.positionWS); float3 d = mul(rotMat, ray.strataDirWS); float range = light.size.x; float3 boxPt0 = float3(-1, -1, 0); float3 boxPt1 = float3( 1, 1, range); float tEntr, tExit; if (IntersectRayAABB(o, d, boxPt0, boxPt1, tMin, tMax, tEntr, tExit)) { float tOffset, weight; ImportanceSampleHomogeneousMedium(rndVal, extinction, tExit - tEntr, tOffset, weight); float t = tEntr + tOffset; posInput.positionWS = GetPointAtDistance(ray, t); float3 L = -light.forward; float3 lightToSample = posInput.positionWS - light.positionWS; float distProj = dot(lightToSample, light.forward); float4 distances = float4(1, 1, 1, distProj); float3 color; float attenuation; EvaluateLight_Punctual(context, posInput, light, unused, 0, L, lightToSample, distances, color, attenuation); // Important: // Ideally, all scattering calculations should use the stratified versions // of the sample position and the ray direction. However, correct reprojection // of asymmetrically scattered lighting (affected by an anisotropic phase // function) is not possible. We work around this issue by reprojecting // lighting not affected by the phase function. This basically removes // the phase function from the temporal integration process. It is a hack. // The downside is that asymmetry no longer benefits from temporal averaging, // and any temporal instability of asymmetry causes causes visible jitter. // In order to stabilize the image, we use the voxel center for all // asymmetry-related calculations. float3 centerL = light.positionWS - centerWS; float cosTheta = dot(centerL, ray.centerDirWS) * rsqrt(dot(centerL, centerL)); float phase = CornetteShanksPhasePartVarying(asymmetry, cosTheta); // Note: the 'weight' accounts for transmittance from 'tEntr' to 't'. float intensity = attenuation * weight; // Compute transmittance from 't0' to 'tEntr'. intensity *= TransmittanceHomogeneousMedium(extinction, tEntr - t0); // Compute the amount of in-scattered radiance. lighting.radianceNoPhase += intensity * color; lighting.radianceComplete += phase * intensity * color; } } } } #ifdef LIGHTLOOP_TILE_PASS cluster++; // Check whether the voxel is completely inside the light cluster. } while ((cluster < 2) && (clusterIndices[0] != clusterIndices[1])); #endif // LIGHTLOOP_TILE_PASS return lighting; } // Computes the in-scattered radiance along the ray. void FillVolumetricLightingBuffer(LightLoopContext context, uint featureFlags, PositionInputs posInput, DualRay ray) { float n = _VBufferDepthDecodingParams.x + _VBufferDepthDecodingParams.z; float z0 = n; // Start integration from the near plane float t0 = ray.strataDirInvViewZ * z0; // Convert view space Z to distance along the stratified ray float de = rcp(VBUFFER_SLICE_COUNT); // Log-encoded distance between slices // The contribution of the ambient probe does not depend on the position, // only on the direction and the length of the interval. // SampleSH9() evaluates the 3-band SH in a given direction. float3 probeInScatteredRadiance = SampleSH9(_AmbientProbeCoeffs, ray.centerDirWS); float3 totalRadiance = 0; float opticalDepth = 0; uint sliceCountHack = max(VBUFFER_SLICE_COUNT, (uint)_VBufferDepthEncodingParams.w); // Prevent unrolling... #ifdef LIGHTLOOP_TILE_PASS // Our voxel is not necessarily completely inside a single light cluster. // Note that Z-binning can solve this problem, as we can iterate over all Z-bins // to compute min/max light indices, and then use this range for the entire slice. uint clusterIndices[2]; float clusterDepths[2]; clusterIndices[0] = GetLightClusterIndex(posInput.tileCoord, z0); clusterDepths[0] = GetLightClusterMinLinearDepth(posInput.tileCoord, clusterIndices[0]); #endif // LIGHTLOOP_TILE_PASS // TODO: replace 'sliceCountHack' with VBUFFER_SLICE_COUNT when the shader compiler bug is fixed. for (uint slice = 0; slice < sliceCountHack; slice++) { float e1 = slice * de + de; // (slice + 1) / sliceCount float z1 = DecodeLogarithmicDepthGeneralized(e1, _VBufferDepthDecodingParams); float t1 = ray.strataDirInvViewZ * z1; // Convert view space Z to distance along the stratified ray float dt = t1 - t0; #ifdef LIGHTLOOP_TILE_PASS clusterIndices[1] = GetLightClusterIndex(posInput.tileCoord, z1); clusterDepths[1] = GetLightClusterMinLinearDepth(posInput.tileCoord, clusterIndices[1]); #endif // Compute the -exact- position of the center of the voxel. // It's important since the accumulated value of the integral is stored at the center. // We will use it for participating media sampling, asymmetric scattering and reprojection. float tc = t0 + 0.5 * dt; float3 centerWS = GetCenterAtDistance(ray, tc); // Sample the participating medium at 'tc' (or 'centerWS'). // We consider it to be constant along the interval [t0, t1] (within the voxel). // TODO: piecewise linear. float3 scattering = _GlobalFog_Scattering; float extinction = max(_GlobalFog_Extinction, FLT_MIN); // Avoid NaNs float asymmetry = _GlobalFog_Asymmetry; // TODO: define a function ComputeGlobalFogCoefficients(float3 centerWS), // which allows procedural definition of extinction and scattering. #if ENABLE_REPROJECTION // This is a sequence of 7 equidistant numbers from 1/14 to 13/14. // Each of them is the centroid of the interval of length 2/14. float rndVal = _VBufferSampleOffset.z; #else float rndVal = 0.5; #endif VoxelLighting lighting = EvaluateVoxelLighting(context, featureFlags, posInput, centerWS, ray, t0, t1, dt, rndVal, extinction, asymmetry #ifdef LIGHTLOOP_TILE_PASS , clusterIndices, clusterDepths); #else ); #endif #if ENABLE_REPROJECTION // Reproject the history at 'centerWS'. float2 reprojPosNDC = ComputeNormalizedDeviceCoordinates(centerWS, _PrevViewProjMatrix); float reprojZ = mul(_PrevViewProjMatrix, float4(centerWS, 1)).w; float4 reprojValue = SampleVBuffer(TEXTURE3D_PARAM(_VBufferLightingHistory, s_trilinear_clamp_sampler), false, reprojPosNDC, reprojZ, _VBufferScaleAndSliceCount, _VBufferDepthEncodingParams, _VBufferDepthDecodingParams); // Compute the exponential moving average over 'n' frames: // X = (1 - a) * ValueAtFrame[n] + a * AverageOverPreviousFrames. // We want each sample to be uniformly weighted by (1 / n): // X = (1 / n) * Sum{i from 1 to n}{ValueAtFrame[i]}. // Therefore, we get: // (1 - a) = (1 / n) => a = (1 - 1 / n) = (n - 1) / n, // X = (1 / n) * ValueAtFrame[n] + (1 - 1 / n) * AverageOverPreviousFrames. // Why does it work? We need to make the following assumption: // AverageOverPreviousFrames ≈ AverageOverFrames[n - 1]. // AverageOverFrames[n - 1] = (1 / (n - 1)) * Sum{i from 1 to n - 1}{ValueAtFrame[i]}. // This implies that the reprojected (accumulated) value has mostly converged. // X = (1 / n) * ValueAtFrame[n] + ((n - 1) / n) * (1 / (n - 1)) * Sum{i from 1 to n - 1}{ValueAtFrame[i]}. // X = (1 / n) * ValueAtFrame[n] + (1 / n) * Sum{i from 1 to n - 1}{ValueAtFrame[i]}. // X = Sum{i from 1 to n}{ValueAtFrame[i] / n}. float numFrames = 7; float frameWeight = 1 / numFrames; float historyWeight = 1 - frameWeight; // The accuracy of the integral linearly decreases with the length of the interval. // Therefore, reprojecting longer intervals should result in a lower confidence. // TODO: doesn't seem to be worth it, removed for now. // Perform temporal blending. // Both radiance values are obtained by integrating over line segments of different length. // Blending only makes sense if the length of both intervals is the same. // Therefore, the reprojected radiance needs to be rescaled by (frame_dt / reproj_dt). // Important: reprojection must be performed without the phase function! Otherwise, // some kind of per-light angle correction is required, which is intractable in practice. bool reprojSuccess = reprojValue.a != 0; float blendFactor = reprojSuccess ? historyWeight : 0; float reprojRcpLen = reprojSuccess ? rcp(reprojValue.a) : 0; float lengthScale = dt * reprojRcpLen; float3 reprojRadiance = reprojValue.rgb; float3 blendedRadiance = (1 - blendFactor) * lighting.radianceNoPhase + blendFactor * lengthScale * reprojRadiance; // Store the feedback for the voxel. // TODO: dynamic lights (which update their position, rotation, cookie or shadow at runtime) // do not support reprojection and should neither read nor write to the history buffer. // to the history buffer. This will cause them to alias, but it is the only way // to prevent ghosting. _VBufferLightingFeedback[uint3(posInput.positionSS, slice)] = float4(blendedRadiance, dt); #if SUPPORT_ASYMMETRY // Extrapolate the influence of the phase function on the results of the current frame. // Use max() to prevent division by 0. float3 phaseCurrFrame = lighting.radianceComplete * rcp(max(lighting.radianceNoPhase, FLT_MIN)); blendedRadiance *= phaseCurrFrame; #endif // SUPPORT_ASYMMETRY #else // ENABLE_REPROJECTION #if SUPPORT_ASYMMETRY float3 blendedRadiance = lighting.radianceComplete; #else // SUPPORT_ASYMMETRY float3 blendedRadiance = lighting.radianceNoPhase; #endif // SUPPORT_ASYMMETRY #endif // ENABLE_REPROJECTION // Compute the transmittance from the camera to 't0'. float transmittance = Transmittance(opticalDepth); #if SUPPORT_ASYMMETRY float phase = _CornetteShanksConstant; #else float phase = IsotropicPhaseFunction(); #endif // Integrate the contribution of the probe over the interval. // Integral{a, b}{Transmittance(0, t) * L_s(t) dt} = Transmittance(0, a) * Integral{a, b}{Transmittance(0, t - a) * L_s(t) dt}. float3 probeRadiance = probeInScatteredRadiance * TransmittanceIntegralHomogeneousMedium(extinction, dt); totalRadiance += transmittance * scattering * (phase * blendedRadiance + probeRadiance); // Compute the optical depth up to the center of the interval. opticalDepth += 0.5 * extinction * dt; // Store the voxel data. _VBufferLightingIntegral[uint3(posInput.positionSS, slice)] = float4(totalRadiance, opticalDepth); // Compute the optical depth up to the end of the interval. opticalDepth += 0.5 * extinction * dt; t0 = t1; #ifdef LIGHTLOOP_TILE_PASS clusterIndices[0] = clusterIndices[1]; clusterDepths[0] = clusterDepths[1]; #endif // LIGHTLOOP_TILE_PASS } } [numthreads(GROUP_SIZE_2D, 1, 1)] void VolumetricLighting(uint2 groupId : SV_GroupID, uint groupThreadId : SV_GroupThreadID) { // Perform compile-time checks. if (!IsPower2(VBUFFER_TILE_SIZE) || !IsPower2(TILE_SIZE_CLUSTERED)) return; // Note: any factor of 64 is a suitable wave size for our algorithm. uint waveIndex = WaveReadFirstLane(groupThreadId / 64); uint laneIndex = groupThreadId % 64; uint quadIndex = laneIndex / 4; // Arrange threads in the Morton order to optimally match the memory layout of GCN tiles. uint2 groupCoord = DecodeMorton2D(groupThreadId); uint2 groupOffset = groupId * GROUP_SIZE_1D; uint2 voxelCoord = groupOffset + groupCoord; uint2 tileCoord = voxelCoord * VBUFFER_TILE_SIZE / TILE_SIZE_CLUSTERED; uint voxelsPerClusterTile = Sq((uint)(TILE_SIZE_CLUSTERED / VBUFFER_TILE_SIZE)); if (voxelsPerClusterTile >= 64) { // TODO: this is a compile-time test, make sure the compiler actually scalarizes. tileCoord = WaveReadFirstLane(tileCoord); } [branch] if (voxelCoord.x >= (uint)_VBufferResolution.x || voxelCoord.y >= (uint)_VBufferResolution.y) { return; } float2 centerCoord = voxelCoord + 0.5; #if ENABLE_REPROJECTION float2 strataCoord = centerCoord + _VBufferSampleOffset.xy; #else float2 strataCoord = centerCoord; #endif // Compute the (tile-stratified) ray direction s.t. its ViewSpace(rayDirWS).z = 1. float3 strataDirWS = mul(-float3(strataCoord, 1), (float3x3)_VBufferCoordToViewDirWS); float strataDirLenSq = dot(strataDirWS, strataDirWS); float strataDirLenRcp = rsqrt(strataDirLenSq); float strataDirLen = strataDirLenSq * strataDirLenRcp; // Compute the (tile-centered) ray direction s.t. its ViewSpace(rayDirWS).z = 1. float3 centerDirWS = mul(-float3(centerCoord, 1), (float3x3)_VBufferCoordToViewDirWS); float centerDirLenSq = dot(centerDirWS, centerDirWS); float centerDirLenRcp = rsqrt(centerDirLenSq); float centerDirLen = centerDirLenSq * centerDirLenRcp; DualRay ray; ray.originWS = GetCurrentViewPosition(); ray.strataDirWS = strataDirWS * strataDirLenRcp; // Normalize ray.centerDirWS = centerDirWS * centerDirLenRcp; // Normalize ray.strataDirInvViewZ = strataDirLen; // View space Z ray.twoDirRatioViewZ = centerDirLen * strataDirLenRcp; // View space Z ratio // TODO LightLoopContext context; context.shadowContext = InitShadowContext(); uint featureFlags = 0xFFFFFFFF; PositionInputs posInput = GetPositionInput(voxelCoord, _VBufferResolution.zw, tileCoord); FillVolumetricLightingBuffer(context, featureFlags, posInput, ray); }