#ifndef UNITY_COMMON_MATERIAL_INCLUDED #define UNITY_COMMON_MATERIAL_INCLUDED //----------------------------------------------------------------------------- // Helper function for anisotropy //----------------------------------------------------------------------------- // Ref: http://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v3.pdf (in addenda) // Convert anisotropic ratio (0->no isotropic; 1->full anisotropy in tangent direction) to roughness void ConvertAnisotropyToRoughness(float roughness, float anisotropy, out float roughnessT, out float roughnessB) { // (0 <= anisotropy <= 1), therefore (0 <= anisoAspect <= 1) // The 0.9 factor limits the aspect ratio to 10:1. float anisoAspect = sqrt(1.0 - 0.9 * anisotropy); roughnessT = roughness / anisoAspect; // Distort along tangent (rougher) roughnessB = roughness * anisoAspect; // Straighten along bitangent (smoother) } // Ref: Donald Revie - Implementing Fur Using Deferred Shading (GPU Pro 2) // The grain direction (e.g. hair or brush direction) is assumed to be orthogonal to the normal. // The returned normal is NOT normalized. float3 ComputeGrainNormal(float3 grainDir, float3 V) { float3 B = cross(-V, grainDir); return cross(B, grainDir); } // Fake anisotropic by distorting the normal. // The grain direction (e.g. hair or brush direction) is assumed to be orthogonal to N. // Anisotropic ratio (0->no isotropic; 1->full anisotropy in tangent direction) float3 GetAnisotropicModifiedNormal(float3 grainDir, float3 N, float3 V, float anisotropy) { float3 grainNormal = ComputeGrainNormal(grainDir, V); // TODO: test whether normalizing 'grainNormal' is worth it. return normalize(lerp(N, grainNormal, anisotropy)); } //----------------------------------------------------------------------------- // Helper function for perceptual roughness //----------------------------------------------------------------------------- float PerceptualRoughnessToRoughness(float perceptualRoughness) { return perceptualRoughness * perceptualRoughness; } float RoughnessToPerceptualRoughness(float roughness) { return sqrt(roughness); } float PerceptualSmoothnessToRoughness(float perceptualSmoothness) { return (1 - perceptualSmoothness) * (1 - perceptualSmoothness); } float PerceptualSmoothnessToPerceptualRoughness(float perceptualSmoothness) { return (1 - perceptualSmoothness); } // ---------------------------------------------------------------------------- // Parallax mapping // ---------------------------------------------------------------------------- float2 ParallaxOffset(float3 viewDirTS, float height) { // Parallax mapping with offset limiting to reduce weird artifcat (i.e do not divide by z), also save performance return viewDirTS.xy * height; } // ref https://www.gamedev.net/topic/678043-how-to-blend-world-space-normals/#entry5287707 // assume compositing in world space // Note: Using vtxNormal = float3(0, 0, 1) give the BlendNormalRNM formulation. // TODO: Untested float3 BlendNormalWorldspaceRNM(float3 n1, float3 n2, float3 vtxNormal) { // Build the shortest-arc quaternion float4 q = float4(cross(vtxNormal, n2), dot(vtxNormal, n2) + 1.0) / sqrt(2.0 * (dot(vtxNormal, n2) + 1)); // Rotate the normal return n1 * (q.w * q.w - dot(q.xyz, q.xyz)) + 2 * q.xyz * dot(q.xyz, n1) + 2 * q.w * cross(q.xyz, n1); } // ref http://blog.selfshadow.com/publications/blending-in-detail/ // ref https://gist.github.com/selfshadow/8048308 // Reoriented Normal Mapping // Blending when n1 and n2 are already 'unpacked' and normalised // assume compositing in tangent space float3 BlendNormalRNM(float3 n1, float3 n2) { float3 t = n1.xyz + float3(0.0, 0.0, 1.0); float3 u = n2.xyz * float3(-1.0, -1.0, 1.0); float3 r = (t / t.z) * dot(t, u) - u; return r; } // assume compositing in tangent space float3 BlendNormal(float3 n1, float3 n2) { return normalize(float3(n1.xy * n2.z + n2.xy * n1.z, n1.z * n2.z)); } // Ref: http://http.developer.nvidia.com/GPUGems3/gpugems3_ch01.html float3 ComputeTriplanarWeights(float3 normal) { // Determine the blend weights for the 3 planar projections. float3 blendWeights = abs(normal); // Tighten up the blending zone blendWeights = (blendWeights - 0.2) * 7.0; // Force weights to sum to 1.0 (very important!) blendWeights = max(blendWeights, float3(0.0, 0.0, 0.0)); blendWeights /= dot(blendWeights, 1.0); return blendWeights; } float LerpWhiteTo(float b, float t) { float oneMinusT = 1.0 - t; return oneMinusT + b * t; } float3 LerpWhiteTo(float3 b, float t) { float oneMinusT = 1.0 - t; return float3(oneMinusT, oneMinusT, oneMinusT) + b * t; } // MACRO from Legacy Untiy // Transforms 2D UV by scale/bias property #define TRANSFORM_TEX(tex, name) ((tex.xy) * name##_ST.xy + name##_ST.zw) #endif // UNITY_COMMON_MATERIAL_INCLUDED