#ifndef UNITY_COMMON_LIGHTING_INCLUDED #define UNITY_COMMON_LIGHTING_INCLUDED // These clamping function to max of floating point 16 bit are use to prevent INF in code in case of extreme value TEMPLATE_1_REAL(ClampToFloat16Max, value, return min(value, HALF_MAX)) // Ligthing convention // Light direction is oriented backward (-Z). i.e in shader code, light direction is -lightData.forward //----------------------------------------------------------------------------- // Helper functions //----------------------------------------------------------------------------- // Performs the mapping of the vector 'v' centered within the axis-aligned cube // of dimensions [-1, 1]^3 to a vector centered within the unit sphere. // The function expects 'v' to be within the cube (possibly unexpected results otherwise). // Ref: http://mathproofs.blogspot.com/2005/07/mapping-cube-to-sphere.html real3 MapCubeToSphere(real3 v) { real3 v2 = v * v; real2 vr3 = v2.xy * rcp(3.0); return v * sqrt((real3)1.0 - 0.5 * v2.yzx - 0.5 * v2.zxy + vr3.yxx * v2.zzy); } // Computes the squared magnitude of the vector computed by MapCubeToSphere(). real ComputeCubeToSphereMapSqMagnitude(real3 v) { real3 v2 = v * v; // Note: dot(v, v) is often computed before this function is called, // so the compiler should optimize and use the precomputed result here. return dot(v, v) - v2.x * v2.y - v2.y * v2.z - v2.z * v2.x + v2.x * v2.y * v2.z; } // texelArea = 4.0 / (resolution * resolution). // Ref: http://bpeers.com/blog/?itemid=1017 // This version is less accurate, but much faster than this one: // http://www.rorydriscoll.com/2012/01/15/cubemap-texel-solid-angle/ real ComputeCubemapTexelSolidAngle(real3 L, real texelArea) { // Stretch 'L' by (1/d) so that it points at a side of a [-1, 1]^2 cube. real d = Max3(abs(L.x), abs(L.y), abs(L.z)); // Since 'L' is a unit vector, we can directly compute its // new (inverse) length without dividing 'L' by 'd' first. real invDist = d; // dw = dA * cosTheta / (dist * dist), cosTheta = 1.0 / dist, // where 'dA' is the area of the cube map texel. return texelArea * invDist * invDist * invDist; } // Only makes sense for Monte-Carlo integration. // Normalize by dividing by the total weight (or the number of samples) in the end. // Integrate[6*(u^2+v^2+1)^(-3/2), {u,-1,1},{v,-1,1}] = 4 * Pi // Ref: "Stupid Spherical Harmonics Tricks", p. 9. real ComputeCubemapTexelSolidAngle(real2 uv) { float u = uv.x, v = uv.y; return pow(1 + u * u + v * v, -1.5); } //----------------------------------------------------------------------------- // Attenuation functions //----------------------------------------------------------------------------- // Ref: Moving Frostbite to PBR. // Non physically based hack to limit light influence to attenuationRadius. // SmoothInfluenceAttenuation must be use, InfluenceAttenuation is just for optimization with SmoothQuadraticDistanceAttenuation real InfluenceAttenuation(real distSquare, real invSqrAttenuationRadius) { real factor = distSquare * invSqrAttenuationRadius; return saturate(1.0 - factor * factor); } real SmoothInfluenceAttenuation(real distSquare, real invSqrAttenuationRadius) { real smoothFactor = InfluenceAttenuation(distSquare, invSqrAttenuationRadius); return Sq(smoothFactor); } #define PUNCTUAL_LIGHT_THRESHOLD 0.01 // 1cm (in Unity 1 is 1m) // Return physically based quadratic attenuation + influence limit to reach 0 at attenuationRadius real SmoothQuadraticDistanceAttenuation(real distSquare, real distRcp, real invSqrAttenuationRadius) { // Becomes quadratic after the call to Sq(). real attenuation = min(distRcp, 1.0 / PUNCTUAL_LIGHT_THRESHOLD); attenuation *= InfluenceAttenuation(distSquare, invSqrAttenuationRadius); return Sq(attenuation); } real SmoothQuadraticDistanceAttenuation(real3 unL, real invSqrAttenuationRadius) { real distSquare = dot(unL, unL); real distRcp = rsqrt(distSquare); return SmoothQuadraticDistanceAttenuation(distSquare, distRcp, invSqrAttenuationRadius); } real AngleAttenuation(real cosFwd, real lightAngleScale, real lightAngleOffset) { return saturate(cosFwd * lightAngleScale + lightAngleOffset); } real SmoothAngleAttenuation(real cosFwd, real lightAngleScale, real lightAngleOffset) { real attenuation = AngleAttenuation(cosFwd, lightAngleScale, lightAngleOffset); return Sq(attenuation); } real SmoothAngleAttenuation(real3 L, real3 lightFwdDir, real lightAngleScale, real lightAngleOffset) { real cosFwd = dot(-L, lightFwdDir); return SmoothAngleAttenuation(cosFwd, lightAngleScale, lightAngleOffset); } // Combines SmoothQuadraticDistanceAttenuation() and SmoothAngleAttenuation() in an efficient manner. // distances = {d, d^2, 1/d, d_proj}, where d_proj = dot(lightToSample, lightData.forward). real SmoothPunctualLightAttenuation(real4 distances, real invSqrAttenuationRadius, real lightAngleScale, real lightAngleOffset) { real distSq = distances.y; real distRcp = distances.z; real distProj = distances.w; real cosFwd = distProj * distRcp; real attenuation = min(distRcp, 1.0 / PUNCTUAL_LIGHT_THRESHOLD); attenuation *= InfluenceAttenuation(distSq, invSqrAttenuationRadius); attenuation *= AngleAttenuation(cosFwd, lightAngleScale, lightAngleOffset); return Sq(attenuation); } // Applies SmoothInfluenceAttenuation() after transforming the attenuation ellipsoid into a sphere. // If r = rsqrt(invSqRadius), then the ellipsoid is defined s.t. r1 = r / invAspectRatio, r2 = r3 = r. // The transformation is performed along the major axis of the ellipsoid (corresponding to 'r1'). // Both the ellipsoid (e.i. 'axis') and 'unL' should be in the same coordinate system. // 'unL' should be computed from the center of the ellipsoid. real EllipsoidalDistanceAttenuation(real3 unL, real invSqRadius, real3 axis, real invAspectRatio) { // Project the unnormalized light vector onto the axis. real projL = dot(unL, axis); // Transform the light vector instead of transforming the ellipsoid. real diff = projL - projL * invAspectRatio; unL -= diff * axis; real sqDist = dot(unL, unL); return SmoothInfluenceAttenuation(sqDist, invSqRadius); } // Applies SmoothInfluenceAttenuation() using the axis-aligned ellipsoid of the given dimensions. // Both the ellipsoid and 'unL' should be in the same coordinate system. // 'unL' should be computed from the center of the ellipsoid. real EllipsoidalDistanceAttenuation(real3 unL, real3 invHalfDim) { // Transform the light vector so that we can work with // with the ellipsoid as if it was a unit sphere. unL *= invHalfDim; real sqDist = dot(unL, unL); return SmoothInfluenceAttenuation(sqDist, 1.0); } // Applies SmoothInfluenceAttenuation() after mapping the axis-aligned box to a sphere. // If the diagonal of the box is 'd', invHalfDim = rcp(0.5 * d). // Both the box and 'unL' should be in the same coordinate system. // 'unL' should be computed from the center of the box. real BoxDistanceAttenuation(real3 unL, real3 invHalfDim) { // Transform the light vector so that we can work with // with the box as if it was a [-1, 1]^2 cube. unL *= invHalfDim; // Our algorithm expects the input vector to be within the cube. if (Max3(abs(unL.x), abs(unL.y), abs(unL.z)) > 1.0) return 0.0; real sqDist = ComputeCubeToSphereMapSqMagnitude(unL); return SmoothInfluenceAttenuation(sqDist, 1.0); } //----------------------------------------------------------------------------- // IES Helper //----------------------------------------------------------------------------- real2 GetIESTextureCoordinate(real3x3 lightToWord, real3 L) { // IES need to be sample in light space real3 dir = mul(lightToWord, -L); // Using matrix on left side do a transpose // convert to spherical coordinate real2 sphericalCoord; // .x is theta, .y is phi // Texture is encoded with cos(phi), scale from -1..1 to 0..1 sphericalCoord.y = (dir.z * 0.5) + 0.5; real theta = atan2(dir.y, dir.x); sphericalCoord.x = theta * INV_TWO_PI; return sphericalCoord; } //----------------------------------------------------------------------------- // Lighting functions //----------------------------------------------------------------------------- // Ref: Horizon Occlusion for Normal Mapped Reflections: http://marmosetco.tumblr.com/post/81245981087 real GetHorizonOcclusion(real3 V, real3 normalWS, real3 vertexNormal, real horizonFade) { real3 R = reflect(-V, normalWS); real specularOcclusion = saturate(1.0 + horizonFade * dot(R, vertexNormal)); // smooth it return specularOcclusion * specularOcclusion; } // Ref: Moving Frostbite to PBR - Gotanda siggraph 2011 // Return specular occlusion based on ambient occlusion (usually get from SSAO) and view/roughness info real GetSpecularOcclusionFromAmbientOcclusion(real NdotV, real ambientOcclusion, real roughness) { return saturate(PositivePow(NdotV + ambientOcclusion, exp2(-16.0 * roughness - 1.0)) - 1.0 + ambientOcclusion); } // ref: Practical Realtime Strategies for Accurate Indirect Occlusion // Update ambient occlusion to colored ambient occlusion based on statitics of how light is bouncing in an object and with the albedo of the object real3 GTAOMultiBounce(real visibility, real3 albedo) { real3 a = 2.0404 * albedo - 0.3324; real3 b = -4.7951 * albedo + 0.6417; real3 c = 2.7552 * albedo + 0.6903; real x = visibility; return max(x, ((x * a + b) * x + c) * x); } // Based on Oat and Sander's 2008 technique // Area/solidAngle of intersection of two cone real SphericalCapIntersectionSolidArea(real cosC1, real cosC2, real cosB) { real r1 = FastACos(cosC1); real r2 = FastACos(cosC2); real rd = FastACos(cosB); real area = 0.0; if (rd <= max(r1, r2) - min(r1, r2)) { // One cap is completely inside the other area = TWO_PI - TWO_PI * max(cosC1, cosC2); } else if (rd >= r1 + r2) { // No intersection exists area = 0.0; } else { real diff = abs(r1 - r2); real den = r1 + r2 - diff; real x = 1.0 - saturate((rd - diff) / den); area = smoothstep(0.0, 1.0, x); area *= TWO_PI - TWO_PI * max(cosC1, cosC2); } return area; } // Ref: Steve McAuley - Energy-Conserving Wrapped Diffuse real ComputeWrappedDiffuseLighting(real NdotL, real w) { return saturate((NdotL + w) / ((1 + w) * (1 + w))); } //----------------------------------------------------------------------------- // Helper functions //----------------------------------------------------------------------------- // Inputs: normalized normal and view vectors. // Outputs: front-facing normal, and the new non-negative value of the cosine of the view angle. // Important: call Orthonormalize() on the tangent and recompute the bitangent afterwards. real3 GetViewReflectedNormal(real3 N, real3 V, out real NdotV) { // Fragments of front-facing geometry can have back-facing normals due to interpolation, // normal mapping and decals. This can cause visible artifacts from both direct (negative or // extremely high values) and indirect (incorrect lookup direction) lighting. // There are several ways to avoid this problem. To list a few: // // 1. Setting { NdotV = max(, SMALL_VALUE) }. This effectively removes normal mapping // from the affected fragments, making the surface appear flat. // // 2. Setting { NdotV = abs() }. This effectively reverses the convexity of the surface. // It also reduces light leaking from non-shadow-casting lights. Note that 'NdotV' can still // be 0 in this case. // // It's important to understand that simply changing the value of the cosine is insufficient. // For one, it does not solve the incorrect lookup direction problem, since the normal itself // is not modified. There is a more insidious issue, however. 'NdotV' is a constituent element // of the mathematical system describing the relationships between different vectors - and // not just normal and view vectors, but also light vectors, half vectors, tangent vectors, etc. // Changing only one angle (or its cosine) leaves the system in an inconsistent state, where // certain relationships can take on different values depending on whether 'NdotV' is used // in the calculation or not. Therefore, it is important to change the normal (or another // vector) in order to leave the system in a consistent state. // // We choose to follow the conceptual approach (2) by reflecting the normal around the // ( = 0) boundary if necessary, as it allows us to preserve some normal mapping details. NdotV = dot(N, V); // N = (NdotV >= 0.0) ? N : (N - 2.0 * NdotV * V); N += (2.0 * saturate(-NdotV)) * V; NdotV = abs(NdotV); return N; } // Generates an orthonormal (row-major) basis from a unit vector. TODO: make it column-major. // The resulting rotation matrix has the determinant of +1. // Ref: 'ortho_basis_pixar_r2' from http://marc-b-reynolds.github.io/quaternions/2016/07/06/Orthonormal.html real3x3 GetLocalFrame(real3 localZ) { real x = localZ.x; real y = localZ.y; real z = localZ.z; real sz = FastSign(z); real a = 1 / (sz + z); real ya = y * a; real b = x * ya; real c = x * sz; real3 localX = real3(c * x * a - 1, sz * b, c); real3 localY = real3(b, y * ya - sz, y); // Note: due to the quaternion formulation, the generated frame is rotated by 180 degrees, // s.t. if localZ = {0, 0, 1}, then localX = {-1, 0, 0} and localY = {0, -1, 0}. return real3x3(localX, localY, localZ); } // Generates an orthonormal (row-major) basis from a unit vector. TODO: make it column-major. // The resulting rotation matrix has the determinant of +1. real3x3 GetLocalFrame(real3 localZ, real3 localX) { real3 localY = cross(localZ, localX); return real3x3(localX, localY, localZ); } #endif // UNITY_COMMON_LIGHTING_INCLUDED