using UnityEngine; using UnityEngine.Rendering; using System.Collections; using UnityEditor; namespace UnityEngine.ScriptableRenderLoop { //[ExecuteInEditMode] public class FptlLighting : ScriptableRenderLoop { [MenuItem("Renderloop/CreateRenderLoopFPTL")] static void CreateRenderLoopFPTL() { var instance = ScriptableObject.CreateInstance(); AssetDatabase.CreateAsset(instance, "Assets/renderloopfptl.asset"); //AssetDatabase.CreateAsset(instance, "Assets/ScriptableRenderLoop/fptl/renderloopfptl.asset"); } public Shader m_DeferredShader; public Shader m_DeferredReflectionShader; public ComputeShader m_BuildScreenAABBShader; public ComputeShader m_BuildPerTileLightListShader; private Material m_DeferredMaterial; private Material m_DeferredReflectionMaterial; static private int kGBufferAlbedo; static private int kGBufferSpecRough; static private int kGBufferNormal; static private int kGBufferEmission; static private int kGBufferZ; static private int kCameraDepthTexture; static private int kGenAABBKernel; static private int kGenListPerTileKernel; static private ComputeBuffer m_lightDataBuffer; static private ComputeBuffer m_convexBoundsBuffer; static private ComputeBuffer m_aabbBoundsBuffer; static private ComputeBuffer lightList; public const int gMaxNumLights = 1024; public const float gFltMax = 3.402823466e+38F; private TextureCache2D m_cookieTexArray; private TextureCacheCubemap m_cubeCookieTexArray; private TextureCacheCubemap m_cubeReflTexArray; void OnEnable() { Rebuild(); } void OnValidate() { Rebuild(); } void ClearComputeBuffers() { if (m_aabbBoundsBuffer != null) m_aabbBoundsBuffer.Release(); if (m_convexBoundsBuffer != null) m_convexBoundsBuffer.Release(); if (m_lightDataBuffer != null) m_lightDataBuffer.Release(); if (lightList != null) lightList.Release(); } void Rebuild() { ClearComputeBuffers(); kGBufferAlbedo = Shader.PropertyToID("_CameraGBufferTexture0"); kGBufferSpecRough = Shader.PropertyToID("_CameraGBufferTexture1"); kGBufferNormal = Shader.PropertyToID("_CameraGBufferTexture2"); kGBufferEmission = Shader.PropertyToID("_CameraGBufferTexture3"); kGBufferZ = Shader.PropertyToID("_CameraGBufferZ"); // used while rendering into G-buffer+ kCameraDepthTexture = Shader.PropertyToID("_CameraDepthTexture"); // copy of that for later sampling in shaders // RenderLoop.renderLoopDelegate += ExecuteRenderLoop; //var deferredShader = GraphicsSettings.GetCustomShader (BuiltinShaderType.DeferredShading); var deferredShader = m_DeferredShader; var deferredReflectionShader = m_DeferredReflectionShader; m_DeferredMaterial = new Material(deferredShader); m_DeferredReflectionMaterial = new Material(deferredReflectionShader); m_DeferredMaterial.hideFlags = HideFlags.HideAndDontSave; m_DeferredReflectionMaterial.hideFlags = HideFlags.HideAndDontSave; kGenAABBKernel = m_BuildScreenAABBShader.FindKernel("ScreenBoundsAABB"); kGenListPerTileKernel = m_BuildPerTileLightListShader.FindKernel("TileLightListGen"); m_aabbBoundsBuffer = new ComputeBuffer(2 * gMaxNumLights, 3 * sizeof(float)); m_convexBoundsBuffer = new ComputeBuffer(gMaxNumLights, System.Runtime.InteropServices.Marshal.SizeOf(typeof(SFiniteLightBound))); m_lightDataBuffer = new ComputeBuffer(gMaxNumLights, System.Runtime.InteropServices.Marshal.SizeOf(typeof(SFiniteLightData))); lightList = new ComputeBuffer(LightDefinitions.NR_LIGHT_MODELS * 1024 * 1024, sizeof(uint)); // enough list memory for a 4k x 4k display m_BuildScreenAABBShader.SetBuffer(kGenAABBKernel, "g_data", m_convexBoundsBuffer); //m_BuildScreenAABBShader.SetBuffer(kGenAABBKernel, "g_vBoundsBuffer", m_aabbBoundsBuffer); m_DeferredMaterial.SetBuffer("g_vLightData", m_lightDataBuffer); m_DeferredReflectionMaterial.SetBuffer("g_vLightData", m_lightDataBuffer); m_BuildPerTileLightListShader.SetBuffer(kGenListPerTileKernel, "g_vBoundsBuffer", m_aabbBoundsBuffer); m_BuildPerTileLightListShader.SetBuffer(kGenListPerTileKernel, "g_vLightData", m_lightDataBuffer); m_cookieTexArray = new TextureCache2D(); m_cubeCookieTexArray = new TextureCacheCubemap(); m_cubeReflTexArray = new TextureCacheCubemap(); m_cookieTexArray.AllocTextureArray(8, 128, 128, TextureFormat.Alpha8, true); m_cubeCookieTexArray.AllocTextureArray(4, 512, 512, TextureFormat.Alpha8, true); m_cubeReflTexArray.AllocTextureArray(64, 128, 128, TextureFormat.DXT5, true); m_DeferredMaterial.SetTexture("_spotCookieTextures", m_cookieTexArray.GetTexCache()); m_DeferredMaterial.SetTexture("_pointCookieTextures", m_cubeCookieTexArray.GetTexCache()); m_DeferredReflectionMaterial.SetTexture("_reflCubeTextures", m_cubeReflTexArray.GetTexCache()); } void OnDisable() { // RenderLoop.renderLoopDelegate -= ExecuteRenderLoop; if (m_DeferredMaterial) DestroyImmediate(m_DeferredMaterial); if (m_DeferredReflectionMaterial) DestroyImmediate(m_DeferredReflectionMaterial); m_cookieTexArray.Release(); m_cubeCookieTexArray.Release(); m_cubeReflTexArray.Release(); m_aabbBoundsBuffer.Release(); m_convexBoundsBuffer.Release(); m_lightDataBuffer.Release(); lightList.Release(); } static void SetupGBuffer(CommandBuffer cmd) { var format10 = RenderTextureFormat.ARGB32; if (SystemInfo.SupportsRenderTextureFormat(RenderTextureFormat.ARGB2101010)) format10 = RenderTextureFormat.ARGB2101010; //@TODO: GetGraphicsCaps().buggyMRTSRGBWriteFlag cmd.GetTemporaryRT(kGBufferAlbedo, -1, -1, 0, FilterMode.Point, RenderTextureFormat.DefaultHDR, RenderTextureReadWrite.Default); cmd.GetTemporaryRT(kGBufferSpecRough, -1, -1, 0, FilterMode.Point, RenderTextureFormat.ARGB32, RenderTextureReadWrite.Default); cmd.GetTemporaryRT(kGBufferNormal, -1, -1, 0, FilterMode.Point, format10, RenderTextureReadWrite.Linear); cmd.GetTemporaryRT(kGBufferEmission, -1, -1, 0, FilterMode.Point, format10, RenderTextureReadWrite.Linear); //@TODO: HDR cmd.GetTemporaryRT(kGBufferZ, -1, -1, 24, FilterMode.Point, RenderTextureFormat.Depth); cmd.GetTemporaryRT(kCameraDepthTexture, -1, -1, 24, FilterMode.Point, RenderTextureFormat.Depth); var colorMRTs = new RenderTargetIdentifier[4] { kGBufferAlbedo, kGBufferSpecRough, kGBufferNormal, kGBufferEmission }; cmd.SetRenderTarget(colorMRTs, new RenderTargetIdentifier(kGBufferZ)); cmd.ClearRenderTarget(true, true, new Color(0, 0, 0, 0)); //@TODO: render VR occlusion mesh } static void RenderGBuffer(CullResults cull, Camera camera, RenderLoop loop) { // setup GBuffer for rendering var cmd = new CommandBuffer(); cmd.name = "Create G-Buffer"; SetupGBuffer(cmd); loop.ExecuteCommandBuffer(cmd); cmd.Dispose(); // render opaque objects using Deferred pass DrawRendererSettings settings = new DrawRendererSettings(cull, camera, new ShaderPassName("Deferred")); settings.sorting.sortOptions = SortOptions.SortByMaterialThenMesh; settings.inputCullingOptions.SetQueuesOpaque(); loop.DrawRenderers(ref settings); } static void CopyDepthAfterGBuffer(RenderLoop loop) { var cmd = new CommandBuffer(); cmd.CopyTexture(new RenderTargetIdentifier(kGBufferZ), new RenderTargetIdentifier(kCameraDepthTexture)); loop.ExecuteCommandBuffer(cmd); cmd.Dispose(); } void DoTiledDeferredLighting(Camera camera, RenderLoop loop, Matrix4x4 viewToWorld, Matrix4x4 scrProj, Matrix4x4 incScrProj, ComputeBuffer lightList) { m_DeferredMaterial.SetBuffer("g_vLightList", lightList); m_DeferredReflectionMaterial.SetBuffer("g_vLightList", lightList); m_DeferredMaterial.SetBuffer("g_vLightData", m_lightDataBuffer); m_DeferredReflectionMaterial.SetBuffer("g_vLightData", m_lightDataBuffer); var cmd = new CommandBuffer(); cmd.name = "DoTiledDeferredLighting"; //cmd.SetRenderTarget(new RenderTargetIdentifier(kGBufferEmission), new RenderTargetIdentifier(kGBufferZ)); // for whatever reason, the output is flipped in the scene view whenever writing to the camera target. // TODO: fix this properly. if (camera.cameraType == CameraType.SceneView) { cmd.SetGlobalFloat("g_flipVertical", 0); } else { cmd.SetGlobalFloat("g_flipVertical", 1); } cmd.SetGlobalMatrix("g_mViewToWorld", viewToWorld); cmd.SetGlobalMatrix("g_mWorldToView", viewToWorld.inverse); cmd.SetGlobalMatrix("g_mScrProjection", scrProj); cmd.SetGlobalMatrix("g_mInvScrProjection", incScrProj); //cmd.Blit (kGBufferNormal, (RenderTexture)null); // debug: display normals cmd.Blit(kGBufferEmission, BuiltinRenderTextureType.CameraTarget, m_DeferredMaterial, 0); cmd.Blit(kGBufferEmission, BuiltinRenderTextureType.CameraTarget, m_DeferredReflectionMaterial, 0); loop.ExecuteCommandBuffer(cmd); cmd.Dispose(); } void SetMatrixCS(CommandBuffer cmd, ComputeShader shadercs, string name, Matrix4x4 mat) { float[] data = new float[16]; for (int c = 0; c < 4; c++) for (int r = 0; r < 4; r++) data[4 * c + r] = mat[r, c]; cmd.SetComputeFloatParams(shadercs, name, data); } int GenerateSourceLightBuffers(Camera camera, CullResults inputs) { ReflectionProbe[] probes = Object.FindObjectsOfType(); int numLights = inputs.culledLights.Length; int numProbes = probes.Length; int numVolumes = numLights + numProbes; SFiniteLightData[] lightData = new SFiniteLightData[numVolumes]; SFiniteLightBound[] boundData = new SFiniteLightBound[numVolumes]; Matrix4x4 worldToView = camera.worldToCameraMatrix; int i = 0; foreach (var cl in inputs.culledLights) { float range = cl.range; Matrix4x4 lightToWorld = cl.localToWorld; //Matrix4x4 worldToLight = l.worldToLocal; Vector3 lightPos = lightToWorld.GetColumn(3); boundData[i].vBoxAxisX = new Vec3(1, 0, 0); boundData[i].vBoxAxisY = new Vec3(0, 1, 0); boundData[i].vBoxAxisZ = new Vec3(0, 0, 1); boundData[i].vScaleXY = new Vec2(1.0f, 1.0f); boundData[i].fRadius = range; lightData[i].flags = 0; lightData[i].fRecipRange = 1.0f / range; lightData[i].vCol = new Vec3(cl.finalColor.r, cl.finalColor.g, cl.finalColor.b); lightData[i].iSliceIndex = 0; lightData[i].uLightModel = (uint)LightDefinitions.DIRECT_LIGHT; bool bHasCookie = cl.light.cookie != null; if (cl.lightType == LightType.Spot) { bool bIsCircularSpot = !bHasCookie; if (!bIsCircularSpot) // square spots always have cookie { lightData[i].iSliceIndex = m_cookieTexArray.FetchSlice(cl.light.cookie); } Vector3 lightDir = lightToWorld.GetColumn(2); // Z axis in world space // represents a left hand coordinate system in world space Vector3 vx = lightToWorld.GetColumn(0); // X axis in world space Vector3 vy = lightToWorld.GetColumn(1); // Y axis in world space Vector3 vz = lightDir; // Z axis in world space // transform to camera space (becomes a left hand coordinate frame in Unity since Determinant(worldToView)<0) vx = worldToView.MultiplyVector(vx); vy = worldToView.MultiplyVector(vy); vz = worldToView.MultiplyVector(vz); const float pi = 3.1415926535897932384626433832795f; const float degToRad = (float)(pi / 180.0); const float radToDeg = (float)(180.0 / pi); //float sa = cl.GetSpotAngle(); // total field of view from left to right side float sa = radToDeg * (2 * Mathf.Acos(1.0f / cl.invCosHalfSpotAngle)); // spot angle doesn't exist in the structure so reversing it for now. float cs = Mathf.Cos(0.5f * sa * degToRad); float si = Mathf.Sin(0.5f * sa * degToRad); float ta = cs > 0.0f ? (si / cs) : gFltMax; float cota = si > 0.0f ? (cs / si) : gFltMax; //const float cotasa = l.GetCotanHalfSpotAngle(); // apply nonuniform scale to OBB of spot light bool bSqueeze = sa < 0.7f * 90.0f; // arb heuristic float fS = bSqueeze ? ta : si; boundData[i].vCen = worldToView.MultiplyPoint(lightPos + ((0.5f * range) * lightDir)); // use mid point of the spot as the center of the bounding volume for building screen-space AABB for tiled lighting. lightData[i].vLaxisX = vx; lightData[i].vLaxisY = vy; lightData[i].vLaxisZ = vz; // scale axis to match box or base of pyramid boundData[i].vBoxAxisX = (fS * range) * vx; boundData[i].vBoxAxisY = (fS * range) * vy; boundData[i].vBoxAxisZ = (0.5f * range) * vz; // generate bounding sphere radius float fAltDx = si; float fAltDy = cs; fAltDy = fAltDy - 0.5f; //if(fAltDy<0) fAltDy=-fAltDy; fAltDx *= range; fAltDy *= range; float fAltDist = Mathf.Sqrt(fAltDy * fAltDy + (bIsCircularSpot ? 1.0f : 2.0f) * fAltDx * fAltDx); boundData[i].fRadius = fAltDist > (0.5f * range) ? fAltDist : (0.5f * range); // will always pick fAltDist boundData[i].vScaleXY = bSqueeze ? new Vec2(0.01f, 0.01f) : new Vec2(1.0f, 1.0f); // fill up ldata lightData[i].uLightType = (uint)LightDefinitions.SPOT_LIGHT; lightData[i].vLpos = worldToView.MultiplyPoint(lightPos); lightData[i].fSphRadiusSq = range * range; lightData[i].fPenumbra = cs; lightData[i].cotan = cota; lightData[i].flags |= (bIsCircularSpot ? LightDefinitions.IS_CIRCULAR_SPOT_SHAPE : 0); lightData[i].flags |= (bHasCookie ? LightDefinitions.HAS_COOKIE_TEXTURE : 0); } else if (cl.lightType == LightType.Point) { if (bHasCookie) { lightData[i].iSliceIndex = m_cubeCookieTexArray.FetchSlice(cl.light.cookie); } boundData[i].vCen = worldToView.MultiplyPoint(lightPos); boundData[i].vBoxAxisX = new Vec3(range, 0, 0); boundData[i].vBoxAxisY = new Vec3(0, range, 0); boundData[i].vBoxAxisZ = new Vec3(0, 0, -range); // transform to camera space (becomes a left hand coordinate frame in Unity since Determinant(worldToView)<0) boundData[i].vScaleXY = new Vec2(1.0f, 1.0f); boundData[i].fRadius = range; // fill up ldata lightData[i].uLightType = (uint)LightDefinitions.SPHERE_LIGHT; lightData[i].vLpos = boundData[i].vCen; lightData[i].fSphRadiusSq = range * range; lightData[i].flags |= (bHasCookie ? LightDefinitions.HAS_COOKIE_TEXTURE : 0); } else { //Assert(false); } // next light if (cl.lightType == LightType.Spot || cl.lightType == LightType.Point) ++i; } // probe.m_BlendDistance // Vector3f extents = 0.5*Abs(probe.m_BoxSize); // C center of rendered refl box <-- GetComponent (Transform).GetPosition() + m_BoxOffset; // cube map capture point: GetComponent (Transform).GetPosition() // shader parameter min and max are C+/-(extents+blendDistance) int numProbesOut = 0; foreach (var rl in probes) { Texture cubemap = rl.mode == ReflectionProbeMode.Custom ? rl.customBakedTexture : rl.bakedTexture; if (cubemap != null) // always a box for now { i = numProbesOut + numLights; lightData[i].flags = 0; Bounds bnds = rl.bounds; Vector3 boxOffset = rl.center; // reflection volume offset relative to cube map capture point float blendDistance = rl.blendDistance; float imp = rl.importance; Matrix4x4 mat = rl.transform.localToWorldMatrix; Vector3 cubeCapturePos = mat.GetColumn(3); // cube map capture position in world space // implicit in CalculateHDRDecodeValues() --> float ints = rl.intensity; bool boxProj = rl.boxProjection; Vector4 decodeVals = rl.CalculateHDRDecodeValues(); // C is reflection volume center in world space (NOT same as cube map capture point) Vector3 e = bnds.extents; // 0.5f * Vector3.Max(-boxSizes[p], boxSizes[p]); //Vector3 C = bnds.center; // P + boxOffset; Vector3 C = mat.MultiplyPoint(boxOffset); // same as commented out line above when rot is identity //Vector3 posForShaderParam = bnds.center - boxOffset; // gives same as rl.GetComponent().position; Vector3 posForShaderParam = cubeCapturePos; // same as commented out line above when rot is identity Vector3 combinedExtent = e + new Vector3(blendDistance, blendDistance, blendDistance); Vector3 vx = mat.GetColumn(0); Vector3 vy = mat.GetColumn(1); Vector3 vz = mat.GetColumn(2); // transform to camera space (becomes a left hand coordinate frame in Unity since Determinant(worldToView)<0) vx = worldToView.MultiplyVector(vx); vy = worldToView.MultiplyVector(vy); vz = worldToView.MultiplyVector(vz); Vector3 Cw = worldToView.MultiplyPoint(C); if (boxProj) lightData[i].flags |= LightDefinitions.IS_BOX_PROJECTED; lightData[i].vLpos = Cw; lightData[i].vLaxisX = vx; lightData[i].vLaxisY = vy; lightData[i].vLaxisZ = vz; lightData[i].vLocalCubeCapturePoint = -boxOffset; lightData[i].fProbeBlendDistance = blendDistance; lightData[i].fLightIntensity = decodeVals.x; lightData[i].fDecodeExp = decodeVals.y; lightData[i].iSliceIndex = m_cubeReflTexArray.FetchSlice(cubemap); Vector3 delta = combinedExtent - e; lightData[i].vBoxInnerDist = e; lightData[i].vBoxInvRange = new Vec3(1.0f / delta.x, 1.0f / delta.y, 1.0f / delta.z); boundData[i].vCen = Cw; boundData[i].vBoxAxisX = combinedExtent.x * vx; boundData[i].vBoxAxisY = combinedExtent.y * vy; boundData[i].vBoxAxisZ = combinedExtent.z * vz; boundData[i].vScaleXY = new Vec2(1.0f, 1.0f); boundData[i].fRadius = combinedExtent.magnitude; // fill up ldata lightData[i].uLightType = (uint)LightDefinitions.BOX_LIGHT; lightData[i].uLightModel = (uint)LightDefinitions.REFLECTION_LIGHT; ++numProbesOut; } } m_convexBoundsBuffer.SetData(boundData); m_lightDataBuffer.SetData(lightData); return numLights + numProbesOut; } /* public override void Render(Camera[] cameras, RenderLoop renderLoop) { foreach (var camera in cameras) { CullResults cullResults; CullingParameters cullingParams; if (!CullResults.GetCullingParameters(camera, out cullingParams)) continue; m_ShadowPass.UpdateCullingParameters(ref cullingParams); cullResults = CullResults.Cull(ref cullingParams, renderLoop); ShadowOutput shadows; m_ShadowPass.Render(renderLoop, cullResults, out shadows); renderLoop.SetupCameraProperties(camera); UpdateLightConstants(cullResults.culledLights, ref shadows); DrawRendererSettings settings = new DrawRendererSettings(cullResults, camera, new ShaderPassName("ForwardBase")); settings.rendererConfiguration = RendererConfiguration.ConfigureOneLightProbePerRenderer | RendererConfiguration.ConfigureReflectionProbesProbePerRenderer; settings.sorting.sortOptions = SortOptions.SortByMaterialThenMesh; renderLoop.DrawRenderers(ref settings); renderLoop.Submit(); } // Post effects }*/ public override void Render(Camera[] cameras, RenderLoop renderLoop) { foreach (var camera in cameras) { CullResults cullResults; CullingParameters cullingParams; if (!CullResults.GetCullingParameters(camera, out cullingParams)) continue; if (CullResults.Cull(camera, renderLoop, out cullResults)) ExecuteRenderLoop(camera, cullResults, renderLoop); } } void ExecuteRenderLoop(Camera camera, CullResults cullResults, RenderLoop loop) { // do anything we need to do upon a new frame. NewFrame(); //m_DeferredMaterial.SetInt("_SrcBlend", camera.hdr ? (int)BlendMode.One : (int)BlendMode.DstColor); //m_DeferredMaterial.SetInt("_DstBlend", camera.hdr ? (int)BlendMode.One : (int)BlendMode.Zero); //m_DeferredReflectionMaterial.SetInt("_SrcBlend", camera.hdr ? (int)BlendMode.One : (int)BlendMode.DstColor); //m_DeferredReflectionMaterial.SetInt("_DstBlend", camera.hdr ? (int)BlendMode.One : (int)BlendMode.Zero); loop.SetupCameraProperties(camera); RenderGBuffer(cullResults, camera, loop); //@TODO: render forward-only objects into depth buffer CopyDepthAfterGBuffer(loop); //@TODO: render reflection probes //RenderLighting(camera, inputs, loop); // Matrix4x4 proj = camera.projectionMatrix; Matrix4x4 temp = new Matrix4x4(); temp.SetRow(0, new Vector4(1.0f, 0.0f, 0.0f, 0.0f)); temp.SetRow(1, new Vector4(0.0f, 1.0f, 0.0f, 0.0f)); temp.SetRow(2, new Vector4(0.0f, 0.0f, 0.5f, 0.5f)); temp.SetRow(3, new Vector4(0.0f, 0.0f, 0.0f, 1.0f)); Matrix4x4 projh = temp * proj; Matrix4x4 invProjh = projh.inverse; int iW = camera.pixelWidth; int iH = camera.pixelHeight; temp.SetRow(0, new Vector4(0.5f * iW, 0.0f, 0.0f, 0.5f * iW)); temp.SetRow(1, new Vector4(0.0f, 0.5f * iH, 0.0f, 0.5f * iH)); temp.SetRow(2, new Vector4(0.0f, 0.0f, 0.5f, 0.5f)); temp.SetRow(3, new Vector4(0.0f, 0.0f, 0.0f, 1.0f)); Matrix4x4 projscr = temp * proj; Matrix4x4 invProjscr = projscr.inverse; int numLights = GenerateSourceLightBuffers(camera, cullResults); int nrTilesX = (iW + 15) / 16; int nrTilesY = (iH + 15) / 16; //ComputeBuffer lightList = new ComputeBuffer(nrTilesX * nrTilesY * (32 / 2), sizeof(uint)); var cmd = new CommandBuffer(); cmd.name = "Build light list"; cmd.SetComputeIntParam(m_BuildScreenAABBShader, "g_iNrVisibLights", numLights); SetMatrixCS(cmd, m_BuildScreenAABBShader, "g_mProjection", projh); SetMatrixCS(cmd, m_BuildScreenAABBShader, "g_mInvProjection", invProjh); cmd.SetComputeBufferParam(m_BuildScreenAABBShader, kGenAABBKernel, "g_vBoundsBuffer", m_aabbBoundsBuffer); cmd.ComputeDispatch(m_BuildScreenAABBShader, kGenAABBKernel, (numLights + 7) / 8, 1, 1); cmd.SetComputeIntParam(m_BuildPerTileLightListShader, "g_iNrVisibLights", numLights); SetMatrixCS(cmd, m_BuildPerTileLightListShader, "g_mScrProjection", projscr); SetMatrixCS(cmd, m_BuildPerTileLightListShader, "g_mInvScrProjection", invProjscr); cmd.SetComputeTextureParam(m_BuildPerTileLightListShader, kGenListPerTileKernel, "g_depth_tex", new RenderTargetIdentifier(kCameraDepthTexture)); cmd.SetComputeBufferParam(m_BuildPerTileLightListShader, kGenListPerTileKernel, "g_vLightList", lightList); cmd.ComputeDispatch(m_BuildPerTileLightListShader, kGenListPerTileKernel, nrTilesX, nrTilesY, 1); loop.ExecuteCommandBuffer(cmd); cmd.Dispose(); DoTiledDeferredLighting(camera, loop, camera.cameraToWorldMatrix, projscr, invProjscr, lightList); //lightList.Release(); loop.Submit(); } void NewFrame() { // update texture caches m_cookieTexArray.NewFrame(); m_cubeCookieTexArray.NewFrame(); m_cubeReflTexArray.NewFrame(); } } }