#ifndef UNITY_COMMON_LIGHTING_INCLUDED #define UNITY_COMMON_LIGHTING_INCLUDED // These clamping function to max of floating point 16 bit are use to prevent INF in code in case of extreme value float ClampToFloat16Max(float value) { return min(value, 65504.0); } float2 ClampToFloat16Max(float2 value) { return min(value, 65504.0); } float3 ClampToFloat16Max(float3 value) { return min(value, 65504.0); } float4 ClampToFloat16Max(float4 value) { return min(value, 65504.0); } // Ligthing convention // Light direction is oriented backward (-Z). i.e in shader code, light direction is -lightData.forward //----------------------------------------------------------------------------- // Helper functions //----------------------------------------------------------------------------- // Performs the mapping of the vector 'v' centered within the axis-aligned cube // of dimensions [-1, 1]^3 to a vector centered within the unit sphere. // The function expects 'v' to be within the cube (possibly unexpected results otherwise). // Ref: http://mathproofs.blogspot.com/2005/07/mapping-cube-to-sphere.html float3 MapCubeToSphere(float3 v) { float3 v2 = v * v; float2 vr3 = v2.xy * rcp(3.0); return v * sqrt((float3)1.0 - 0.5 * v2.yzx - 0.5 * v2.zxy + vr3.yxx * v2.zzy); } // Computes the squared magnitude of the vector computed by MapCubeToSphere(). float ComputeCubeToSphereMapSqMagnitude(float3 v) { float3 v2 = v * v; // Note: dot(v, v) is often computed before this function is called, // so the compiler should optimize and use the precomputed result here. return dot(v, v) - v2.x * v2.y - v2.y * v2.z - v2.z * v2.x + v2.x * v2.y * v2.z; } // texelArea = 4.0 / (resolution * resolution). // Ref: http://bpeers.com/blog/?itemid=1017 float ComputeCubemapTexelSolidAngle(float3 L, float texelArea) { // Stretch 'L' by (1/d) so that it points at a side of a [-1, 1]^2 cube. float d = Max3(abs(L.x), abs(L.y), abs(L.z)); // Since 'L' is a unit vector, we can directly compute its // new (inverse) length without dividing 'L' by 'd' first. float invDist = d; // dw = dA * cosTheta / (dist * dist), cosTheta = 1.0 / dist, // where 'dA' is the area of the cube map texel. return texelArea * invDist * invDist * invDist; } //----------------------------------------------------------------------------- // Attenuation functions //----------------------------------------------------------------------------- // Ref: Moving Frostbite to PBR float SmoothDistanceAttenuation(float squaredDistance, float invSqrAttenuationRadius) { float factor = squaredDistance * invSqrAttenuationRadius; float smoothFactor = saturate(1.0 - factor * factor); return smoothFactor * smoothFactor; } #define PUNCTUAL_LIGHT_THRESHOLD 0.01 // 1cm (in Unity 1 is 1m) float GetDistanceAttenuation(float3 unL, float invSqrAttenuationRadius) { float sqrDist = dot(unL, unL); float attenuation = 1.0 / (max(PUNCTUAL_LIGHT_THRESHOLD * PUNCTUAL_LIGHT_THRESHOLD, sqrDist)); // Non physically based hack to limit light influence to attenuationRadius. attenuation *= SmoothDistanceAttenuation(sqrDist, invSqrAttenuationRadius); return attenuation; } float GetAngleAttenuation(float3 L, float3 lightDir, float lightAngleScale, float lightAngleOffset) { float cd = dot(lightDir, L); float attenuation = saturate(cd * lightAngleScale + lightAngleOffset); // smooth the transition attenuation *= attenuation; return attenuation; } // Applies SmoothDistanceAttenuation() after transforming the attenuation ellipsoid into a sphere. // If r = rsqrt(invSqRadius), then the ellipsoid is defined s.t. r1 = r / invAspectRatio, r2 = r3 = r. // The transformation is performed along the major axis of the ellipsoid (corresponding to 'r1'). // Both the ellipsoid (e.i. 'axis') and 'unL' should be in the same coordinate system. // 'unL' should be computed from the center of the ellipsoid. float GetEllipsoidalDistanceAttenuation(float3 unL, float invSqRadius, float3 axis, float invAspectRatio) { // Project the unnormalized light vector onto the axis. float projL = dot(unL, axis); // Transform the light vector instead of transforming the ellipsoid. float diff = projL - projL * invAspectRatio; unL -= diff * axis; float sqDist = dot(unL, unL); return SmoothDistanceAttenuation(sqDist, invSqRadius); } // Applies SmoothDistanceAttenuation() using the axis-aligned ellipsoid of the given dimensions. // Both the ellipsoid and 'unL' should be in the same coordinate system. // 'unL' should be computed from the center of the ellipsoid. float GetEllipsoidalDistanceAttenuation(float3 unL, float3 invHalfDim) { // Transform the light vector so that we can work with // with the ellipsoid as if it was a unit sphere. unL *= invHalfDim; float sqDist = dot(unL, unL); return SmoothDistanceAttenuation(sqDist, 1.0); } // Applies SmoothDistanceAttenuation() after mapping the axis-aligned box to a sphere. // If the diagonal of the box is 'd', invHalfDim = rcp(0.5 * d). // Both the box and 'unL' should be in the same coordinate system. // 'unL' should be computed from the center of the box. float GetBoxDistanceAttenuation(float3 unL, float3 invHalfDim) { // Transform the light vector so that we can work with // with the box as if it was a [-1, 1]^2 cube. unL *= invHalfDim; // Our algorithm expects the input vector to be within the cube. if (Max3(abs(unL.x), abs(unL.y), abs(unL.z)) > 1.0) return 0.0; float sqDist = ComputeCubeToSphereMapSqMagnitude(unL); return SmoothDistanceAttenuation(sqDist, 1.0); } //----------------------------------------------------------------------------- // IES Helper //----------------------------------------------------------------------------- float2 GetIESTextureCoordinate(float3x3 lightToWord, float3 L) { // IES need to be sample in light space float3 dir = mul(lightToWord, -L); // Using matrix on left side do a transpose // convert to spherical coordinate float2 sphericalCoord; // .x is theta, .y is phi // Texture is encoded with cos(phi), scale from -1..1 to 0..1 sphericalCoord.y = (dir.z * 0.5) + 0.5; float theta = atan2(dir.y, dir.x); sphericalCoord.x = theta * INV_TWO_PI; return sphericalCoord; } //----------------------------------------------------------------------------- // Lighting functions //----------------------------------------------------------------------------- // Ref: Horizon Occlusion for Normal Mapped Reflections: http://marmosetco.tumblr.com/post/81245981087 float GetHorizonOcclusion(float3 V, float3 normalWS, float3 vertexNormal, float horizonFade) { float3 R = reflect(-V, normalWS); float specularOcclusion = saturate(1.0 + horizonFade * dot(R, vertexNormal)); // smooth it return specularOcclusion * specularOcclusion; } //----------------------------------------------------------------------------- // Helper functions //----------------------------------------------------------------------------- // NdotV should not be negative for visible pixels, but it can happen due to the // perspective projection and the normal mapping + decals. In that case, the normal // should be modified to become valid (i.e facing the camera) to avoid weird artifacts. // Note: certain applications (e.g. SpeedTree) require to still have negative normal to perform their own two sided lighting // This will potentially reduce the length of the normal at edges of geometry. float GetShiftedNdotV(inout float3 N, float3 V, bool twoSided) { float NdotV = dot(N, V); float limit = rcp(256.0); // Determined mostly by the quality of the G-buffer normal encoding if (!twoSided && NdotV < limit) { // We do not renormalize the normal because { abs(length(N) - 1.0) < limit }. N += (-NdotV + limit) * V; NdotV = limit; } return NdotV; } // Generates an orthonormal basis from a unit vector. float3x3 GetLocalFrame(float3 localZ) { float3 upVector = abs(localZ.z) < 0.999 ? float3(0.0, 0.0, 1.0) : float3(1.0, 0.0, 0.0); float3 localX = normalize(cross(upVector, localZ)); float3 localY = cross(localZ, localX); return float3x3(localX, localY, localZ); } // TODO: test /* // http://orbit.dtu.dk/files/57573287/onb_frisvad_jgt2012.pdf void GetLocalFrame(float3 N, out float3 tangentX, out float3 tangentY) { if (N.z < -0.999) // Handle the singularity { tangentX = float3(0.0, -1.0, 0.0); tangentY = float3(-1.0, 0.0, 0.0); return ; } float a = 1.0 / (1.0 + N.z); float b = -N.x * N.y * a; tangentX = float3(1.0 - N.x * N.x * a , b, -N.x); tangentY = float3(b, 1.0 - N.y * N.y * a, -N.y); } */ #endif // UNITY_COMMON_LIGHTING_INCLUDED