//------------------------------------------------------------------------------------- // Lighting Helpers // Glossy Environment half3 Unity_AnisotropicGlossyEnvironment(UNITY_ARGS_TEXCUBE(tex), half4 hdr, Unity_GlossyEnvironmentData glossIn, half anisotropy) //Reference IBL from HD Pipe (Add half3 L input and replace R) { half perceptualRoughness = glossIn.roughness /* perceptualRoughness */; // TODO: CAUTION: remap from Morten may work only with offline convolution, see impact with runtime convolution! // For now disabled #if 0 float m = PerceptualRoughnessToRoughness(perceptualRoughness); // m is the real roughness parameter const float fEps = 1.192092896e-07F; // smallest such that 1.0+FLT_EPSILON != 1.0 (+1e-4h is NOT good here. is visibly very wrong) float n = (2.0 / max(fEps, m*m)) - 2.0; // remap to spec power. See eq. 21 in --> https://dl.dropboxusercontent.com/u/55891920/papers/mm_brdf.pdf n /= 4; // remap from n_dot_h formulatino to n_dot_r. See section "Pre-convolved Cube Maps vs Path Tracers" --> https://s3.amazonaws.com/docs.knaldtech.com/knald/1.0.0/lys_power_drops.html perceptualRoughness = pow(2 / (n + 2), 0.25); // remap back to square root of real roughness (0.25 include both the sqrt root of the conversion and sqrt for going from roughness to perceptualRoughness) #else // MM: came up with a surprisingly close approximation to what the #if 0'ed out code above does. perceptualRoughness = perceptualRoughness*(1.7 - 0.7*perceptualRoughness); #endif half mip = perceptualRoughnessToMipmapLevel(perceptualRoughness); half3 R = glossIn.reflUVW;// -half3(anisotropy, 0, 0); half4 rgbm = UNITY_SAMPLE_TEXCUBE_LOD(tex, R, mip); return DecodeHDR(rgbm, hdr); } // Indirect Specular inline half3 UnityGI_AnisotropicIndirectSpecular(UnityGIInput data, half occlusion, Unity_GlossyEnvironmentData glossIn, half anisotropy, half3x3 worldVectors) { half3 specular; float3 tangentX = worldVectors[0]; float3 tangentY = worldVectors[1]; float3 N = worldVectors[2]; float3 V = data.worldViewDir; float3 iblNormalWS = GetAnisotropicModifiedNormal(tangentY, N, V, anisotropy); float3 iblR = reflect(-V, iblNormalWS); #ifdef UNITY_SPECCUBE_BOX_PROJECTION // we will tweak reflUVW in glossIn directly (as we pass it to Unity_GlossyEnvironment twice for probe0 and probe1), so keep original to pass into BoxProjectedCubemapDirection half3 originalReflUVW = glossIn.reflUVW; glossIn.reflUVW = BoxProjectedCubemapDirection(iblR, data.worldPos, data.probePosition[0], data.boxMin[0], data.boxMax[0]); #endif #ifdef _GLOSSYREFLECTIONS_OFF specular = unity_IndirectSpecColor.rgb; #else half3 env0 = Unity_AnisotropicGlossyEnvironment(UNITY_PASS_TEXCUBE(unity_SpecCube0), data.probeHDR[0], glossIn, anisotropy); //half3 env0 = Unity_AnisotropicGlossyEnvironment(UNITY_PASS_TEXCUBE(unity_SpecCube0), data.probeHDR[0], glossIn, anisotropy, L); //Reference IBL from HD Pipe #ifdef UNITY_SPECCUBE_BLENDING const float kBlendFactor = 0.99999; float blendLerp = data.boxMin[0].w; UNITY_BRANCH if (blendLerp < kBlendFactor) { #ifdef UNITY_SPECCUBE_BOX_PROJECTION glossIn.reflUVW = BoxProjectedCubemapDirection(iblR, data.worldPos, data.probePosition[1], data.boxMin[1], data.boxMax[1]); #endif half3 env1 = Unity_AnisotropicGlossyEnvironment(UNITY_PASS_TEXCUBE_SAMPLER(unity_SpecCube1, unity_SpecCube0), data.probeHDR[1], glossIn, anisotropy); //half3 env1 = Unity_AnisotropicGlossyEnvironment(UNITY_PASS_TEXCUBE_SAMPLER(unity_SpecCube1, unity_SpecCube0), data.probeHDR[1], glossIn, anisotropy, L); //Reference IBL from HD Pipe specular = lerp(env1, env0, blendLerp); } else { specular = env0; } #else specular = env0; #endif #endif return specular * occlusion;// *weightOverPdf; //Reference IBL from HD Pipe //return specular * occlusion * weightOverPdf; //Reference IBL from HD Pipe } // Global Illumination inline UnityGI UnityAnisotropicGlobalIllumination(UnityGIInput data, half occlusion, half3 normalWorld, Unity_GlossyEnvironmentData glossIn, half anisotropy, half3x3 worldVectors) { UnityGI o_gi = UnityGI_Base(data, occlusion, normalWorld); o_gi.indirect.specular = UnityGI_AnisotropicIndirectSpecular(data, occlusion, glossIn, anisotropy, worldVectors); return o_gi; } //------------------------------------------------------------------------------------- // Lighting Functions //Surface Description struct SurfaceOutputAdvanced { fixed3 Albedo; // base (diffuse or specular) color fixed3 Normal; // tangent space normal, if written half3 Emission; half Metallic; // 0=non-metal, 1=metal // Smoothness is the user facing name, it should be perceptual smoothness but user should not have to deal with it. // Everywhere in the code you meet smoothness it is perceptual smoothness half Smoothness; // 0=rough, 1=smooth half Occlusion; // occlusion (default 1) fixed Alpha; // alpha for transparencies half Anisotropy; half4 CustomData; float3x3 WorldVectors; //half ShadingModel; }; inline half4 LightingAdvanced(SurfaceOutputAdvanced s, half3 viewDir, UnityGI gi) { s.Normal = normalize(s.Normal); half oneMinusReflectivity; half3 specColor; s.Albedo = DiffuseAndSpecularFromMetallic(s.Albedo, s.Metallic, /*out*/ specColor, /*out*/ oneMinusReflectivity); // shader relies on pre-multiply alpha-blend (_SrcBlend = One, _DstBlend = OneMinusSrcAlpha) // this is necessary to handle transparency in physically correct way - only diffuse component gets affected by alpha half outputAlpha; s.Albedo = PreMultiplyAlpha(s.Albedo, s.Alpha, oneMinusReflectivity, /*out*/ outputAlpha); half4 c = SurfaceShading(s.Albedo, specColor, oneMinusReflectivity, s.Smoothness, s.Normal, s.WorldVectors, s.Anisotropy, s.CustomData, s.Metallic, viewDir, gi.light, gi.indirect); c.rgb += SubsurfaceShading(s.Albedo, specColor, s.Normal, s.Smoothness, viewDir, s.CustomData, gi.light); //c.rgb += UNITY_BRDF_GI(s.Albedo, specColor, oneMinusReflectivity, s.Smoothness, s.Normal, viewDir, s.Occlusion, gi); c.a = outputAlpha; return c; } //This is pointless as always forward? inline half4 LightingAdvanced_Deferred(SurfaceOutputAdvanced s, half3 viewDir, UnityGI gi, out half4 outGBuffer0, out half4 outGBuffer1, out half4 outGBuffer2) { half oneMinusReflectivity; half3 specColor; s.Albedo = DiffuseAndSpecularFromMetallic(s.Albedo, s.Metallic, /*out*/ specColor, /*out*/ oneMinusReflectivity); half4 c = SurfaceShading(s.Albedo, specColor, oneMinusReflectivity, s.Smoothness, s.Normal, s.WorldVectors, s.Anisotropy, s.CustomData, s.Metallic, viewDir, gi.light, gi.indirect); c.rgb += SubsurfaceShading(s.Albedo, specColor, s.Normal, s.Smoothness, viewDir, s.CustomData, gi.light); UnityStandardData data; data.diffuseColor = s.Albedo; data.occlusion = s.Occlusion; data.specularColor = specColor; data.smoothness = s.Smoothness; data.normalWorld = s.Normal; UnityStandardDataToGbuffer(data, outGBuffer0, outGBuffer1, outGBuffer2); half4 emission = half4(s.Emission + c.rgb, 1); return emission; } inline void LightingAdvanced_GI(SurfaceOutputAdvanced s, UnityGIInput data, inout UnityGI gi) { #if defined(UNITY_PASS_DEFERRED) && UNITY_ENABLE_REFLECTION_BUFFERS gi = UnityGlobalIllumination(data, s.Occlusion, s.Normal); #else Unity_GlossyEnvironmentData g = UnityGlossyEnvironmentSetup(s.Smoothness, data.worldViewDir, s.Normal, lerp(unity_ColorSpaceDielectricSpec.rgb, s.Albedo, s.Metallic)); gi = UnityAnisotropicGlobalIllumination(data, s.Occlusion, s.Normal, g, s.Anisotropy, s.WorldVectors); #endif }