#ifndef LIGHTWEIGHT_LIGHTING_INCLUDED #define LIGHTWEIGHT_LIGHTING_INCLUDED UnityIndirect LightweightGI(float2 lightmapUV, half3 ambientColor, half3 reflectVec, half occlusion, half roughness) { UnityIndirect o = (UnityIndirect)0; #ifdef LIGHTMAP_ON o.diffuse = (DecodeLightmap(UNITY_SAMPLE_TEX2D(unity_Lightmap, lightmapUV))); #endif #if defined(_VERTEX_LIGHTS) || defined(_LIGHT_PROBES_ON) o.diffuse += ambientColor; #endif o.diffuse *= occlusion; // perceptualRoughness Unity_GlossyEnvironmentData g; g.roughness = roughness; g.reflUVW = reflectVec; o.specular = Unity_GlossyEnvironment(UNITY_PASS_TEXCUBE(unity_SpecCube0), unity_SpecCube0_HDR, g) * occlusion; return o; } inline half ComputeLightAttenuationVertex(LightInput lightInput, half3 normal, float3 worldPos, out half3 lightDirection) { float4 attenuationParams = lightInput.atten; float3 posToLightVec = lightInput.pos - worldPos; float distanceSqr = max(dot(posToLightVec, posToLightVec), 0.001); //// attenuationParams.z = kQuadFallOff = (25.0) / (lightRange * lightRange) //// attenuationParams.w = lightRange * lightRange //// TODO: we can precompute 1.0 / (attenuationParams.w * 0.64 - attenuationParams.w) //// falloff is computed from 80% light range squared float lightAtten = half(1.0 / (1.0 + distanceSqr * attenuationParams.z)); // normalized light dir lightDirection = half3(posToLightVec * rsqrt(distanceSqr)); #if !(defined(_SINGLE_POINT_LIGHT) || defined(_SINGLE_DIRECTIONAL_LIGHT)) half SdotL = saturate(dot(lightInput.spotDir.xyz, lightDirection)); lightAtten *= saturate((SdotL - attenuationParams.x) / attenuationParams.y); #endif return half(lightAtten); } inline half ComputeLightAttenuation(LightInput lightInput, half3 normal, float3 worldPos, out half3 lightDirection) { float4 attenuationParams = lightInput.atten; #ifdef _SINGLE_DIRECTIONAL_LIGHT // Light pos holds normalized light dir lightDirection = lightInput.pos; return 1.0; #else float3 posToLightVec = lightInput.pos.xyz - worldPos * lightInput.pos.w; float distanceSqr = max(dot(posToLightVec, posToLightVec), 0.001); #ifdef _ATTENUATION_TEXTURE float lightAtten = tex2D(_AttenuationTexture, float2(distanceSqr / attenuationParams.w, 0.0)).a; #else //// attenuationParams.z = kQuadFallOff = (25.0) / (lightRange * lightRange) //// attenuationParams.w = lightRange * lightRange //// TODO: we can precompute 1.0 / (attenuationParams.w * 0.64 - attenuationParams.w) //// falloff is computed from 80% light range squared float lightAtten = half(1.0 / (1.0 + distanceSqr * attenuationParams.z)); float falloff = saturate((distanceSqr - attenuationParams.w) / (attenuationParams.w * 0.64 - attenuationParams.w)); lightAtten *= half(falloff); #endif // normalized light dir lightDirection = half3(posToLightVec * rsqrt(distanceSqr)); #ifndef _SINGLE_POINT_LIGHT half SdotL = saturate(dot(lightInput.spotDir.xyz, lightDirection)); lightAtten *= saturate((SdotL - attenuationParams.x) / attenuationParams.y); #endif return half(lightAtten); #endif // _SINGLE_DIRECTIONAL_LIGHT } inline half3 LightingLambert(half3 diffuseColor, half3 lightDir, half3 normal, half atten) { half NdotL = saturate(dot(normal, lightDir)); return diffuseColor * (NdotL * atten); } inline half3 LightingBlinnPhong(half3 diffuseColor, half4 specularGloss, half3 lightDir, half3 normal, half3 viewDir, half atten) { half NdotL = saturate(dot(normal, lightDir)); half3 diffuse = diffuseColor * NdotL; half3 halfVec = normalize(lightDir + viewDir); half NdotH = saturate(dot(normal, halfVec)); half3 specular = specularGloss.rgb * (pow(NdotH, _Shininess * 128.0) * specularGloss.a); return (diffuse + specular) * atten; } #endif