using UnityEngine.Rendering; using UnityEngine.Experimental.Rendering; using System.Collections.Generic; using System; using UnityEditor; namespace UnityEngine.Experimental.ScriptableRenderLoop { [ExecuteInEditMode] // This HDRenderLoop assume linear lighting. Don't work with gamma. public class HDRenderLoop : ScriptableRenderLoop { private const string k_HDRenderLoopPath = "Assets/ScriptableRenderLoop/HDRenderLoop/HDRenderLoop.asset"; // Must be in sync with DebugViewMaterial.hlsl public enum DebugViewVaryingMode { TexCoord0 = 1, TexCoord1 = 2, TexCoord2 = 3, VertexTangentWS = 4, VertexBitangentWS = 5, VertexNormalWS = 6, VertexColor = 7, } // Must be in sync with DebugViewMaterial.hlsl public enum DebugViewGbufferMode { Depth = 10, BakeDiffuseLighting = 11, } public class DebugParameters { // Material Debugging public int debugViewMaterial = 0; // Rendering debugging public bool displayOpaqueObjects = true; public bool displayTransparentObjects = true; public bool useForwardRenderingOnly = false; public bool enableTonemap = true; public float exposure = 0; } private DebugParameters m_DebugParameters = new DebugParameters(); public DebugParameters debugParameters { get { return m_DebugParameters; } } #if UNITY_EDITOR [MenuItem("Renderloop/CreateHDRenderLoop")] static void CreateHDRenderLoop() { var instance = ScriptableObject.CreateInstance(); UnityEditor.AssetDatabase.CreateAsset(instance, k_HDRenderLoopPath); } #endif public class GBufferManager { public const int MaxGbuffer = 8; public void SetBufferDescription(int index, string stringId, RenderTextureFormat inFormat, RenderTextureReadWrite inSRGBWrite) { IDs[index] = Shader.PropertyToID(stringId); RTIDs[index] = new RenderTargetIdentifier(IDs[index]); formats[index] = inFormat; sRGBWrites[index] = inSRGBWrite; } public void InitGBuffers(int width, int height, CommandBuffer cmd) { for (int index = 0; index < gbufferCount; index++) { /* RTs[index] = */ cmd.GetTemporaryRT(IDs[index], width, height, 0, FilterMode.Point, formats[index], sRGBWrites[index]); } } public RenderTargetIdentifier[] GetGBuffers(CommandBuffer cmd) { var colorMRTs = new RenderTargetIdentifier[gbufferCount]; for (int index = 0; index < gbufferCount; index++) { colorMRTs[index] = RTIDs[index]; } return colorMRTs; } /* public void BindBuffers(Material mat) { for (int index = 0; index < gbufferCount; index++) { mat.SetTexture(IDs[index], RTs[index]); } } */ public int gbufferCount { get; set; } int[] IDs = new int[MaxGbuffer]; RenderTargetIdentifier[] RTIDs = new RenderTargetIdentifier[MaxGbuffer]; RenderTextureFormat[] formats = new RenderTextureFormat[MaxGbuffer]; RenderTextureReadWrite[] sRGBWrites = new RenderTextureReadWrite[MaxGbuffer]; } public const int MaxLights = 32; public const int MaxShadows = 16; // Max shadow allowed on screen simultaneously - a point light is 6 shadows public const int MaxProbes = 32; [SerializeField] ShadowSettings m_ShadowSettings = ShadowSettings.Default; ShadowRenderPass m_ShadowPass; [SerializeField] TextureSettings m_TextureSettings = TextureSettings.Default; Material m_DeferredMaterial; Material m_FinalPassMaterial; // TODO: Find a way to automatically create/iterate through these kind of class Lit.RenderLoop m_LitRenderLoop; // Debug Material m_DebugViewMaterialGBuffer; GBufferManager m_gbufferManager = new GBufferManager(); static private int s_CameraColorBuffer; static private int s_CameraDepthBuffer; static private ComputeBuffer s_punctualLightList; static private ComputeBuffer s_envLightList; static private ComputeBuffer s_punctualShadowList; private TextureCacheCubemap m_cubeReflTexArray; void OnEnable() { Rebuild(); } void OnValidate() { Rebuild(); } void ClearComputeBuffers() { if (s_punctualLightList != null) s_punctualLightList.Release(); if (s_punctualShadowList != null) s_punctualShadowList.Release(); if (s_envLightList != null) s_envLightList.Release(); } Material CreateEngineMaterial(string shaderPath) { var mat = new Material(Shader.Find(shaderPath) as Shader) { hideFlags = HideFlags.HideAndDontSave }; return mat; } public override void Rebuild() { ClearComputeBuffers(); s_CameraColorBuffer = Shader.PropertyToID("_CameraColorTexture"); s_CameraDepthBuffer = Shader.PropertyToID("_CameraDepthTexture"); s_punctualLightList = new ComputeBuffer(MaxLights, System.Runtime.InteropServices.Marshal.SizeOf(typeof(PunctualLightData))); s_envLightList = new ComputeBuffer(MaxLights, System.Runtime.InteropServices.Marshal.SizeOf(typeof(EnvLightData))); s_punctualShadowList = new ComputeBuffer(MaxShadows, System.Runtime.InteropServices.Marshal.SizeOf(typeof(PunctualShadowData))); m_DeferredMaterial = CreateEngineMaterial("Hidden/HDRenderLoop/Deferred"); m_FinalPassMaterial = CreateEngineMaterial("Hidden/HDRenderLoop/FinalPass"); // Debug m_DebugViewMaterialGBuffer = CreateEngineMaterial("Hidden/HDRenderLoop/DebugViewMaterialGBuffer"); m_ShadowPass = new ShadowRenderPass (m_ShadowSettings); m_cubeReflTexArray = new TextureCacheCubemap(); m_cubeReflTexArray.AllocTextureArray(32, (int)m_TextureSettings.reflectionCubemapSize, TextureFormat.BC6H, true); // Init Lit material buffer - GBuffer and init m_LitRenderLoop = new Lit.RenderLoop(); // Our object can be garbacge collected, so need to be allocate here m_gbufferManager.gbufferCount = m_LitRenderLoop.GetGBufferCount(); for (int gbufferIndex = 0; gbufferIndex < m_gbufferManager.gbufferCount; ++gbufferIndex) { m_gbufferManager.SetBufferDescription(gbufferIndex, "_CameraGBufferTexture" + gbufferIndex, m_LitRenderLoop.RTFormat[gbufferIndex], m_LitRenderLoop.RTReadWrite[gbufferIndex]); } m_LitRenderLoop.Rebuild(); } void OnDisable() { m_LitRenderLoop.OnDisable(); s_punctualLightList.Release(); s_envLightList.Release(); s_punctualShadowList.Release(); if (m_DeferredMaterial) DestroyImmediate(m_DeferredMaterial); if (m_FinalPassMaterial) DestroyImmediate(m_FinalPassMaterial); m_cubeReflTexArray.Release(); } void InitAndClearBuffer(Camera camera, RenderLoop renderLoop) { // We clear only the depth buffer, no need to clear the various color buffer as we overwrite them. // Clear depth/stencil and init buffers { var cmd = new CommandBuffer(); cmd.name = "InitGBuffers and clear Depth/Stencil"; // Init buffer // With scriptable render loop we must allocate ourself depth and color buffer (We must be independent of backbuffer for now, hope to fix that later). // Also we manage ourself the HDR format, here allocating fp16 directly. // With scriptable render loop we can allocate temporary RT in a command buffer, they will not be release with ExecuteCommandBuffer // These temporary surface are release automatically at the end of the scriptable renderloop if not release explicitly int w = camera.pixelWidth; int h = camera.pixelHeight; cmd.GetTemporaryRT(s_CameraColorBuffer, w, h, 0, FilterMode.Point, RenderTextureFormat.ARGBHalf, RenderTextureReadWrite.Default); cmd.GetTemporaryRT(s_CameraDepthBuffer, w, h, 24, FilterMode.Point, RenderTextureFormat.Depth); m_gbufferManager.InitGBuffers(w, h, cmd); cmd.SetRenderTarget(new RenderTargetIdentifier(s_CameraColorBuffer), new RenderTargetIdentifier(s_CameraDepthBuffer)); cmd.ClearRenderTarget(true, false, new Color(0, 0, 0, 0)); renderLoop.ExecuteCommandBuffer(cmd); cmd.Dispose(); } // TEMP: As we are in development and have not all the setup pass we still clear the color in emissive buffer and gbuffer, but this will be removed later. // Clear HDR target { var cmd = new CommandBuffer(); cmd.name = "Clear HDR target"; cmd.SetRenderTarget(new RenderTargetIdentifier(s_CameraColorBuffer), new RenderTargetIdentifier(s_CameraDepthBuffer)); cmd.ClearRenderTarget(false, true, new Color(0, 0, 0, 0)); renderLoop.ExecuteCommandBuffer(cmd); cmd.Dispose(); } // Clear GBuffers { var cmd = new CommandBuffer(); cmd.name = "Clear GBuffer"; // Write into the Camera Depth buffer cmd.SetRenderTarget(m_gbufferManager.GetGBuffers(cmd), new RenderTargetIdentifier(s_CameraDepthBuffer)); // Clear everything // TODO: Clear is not required for color as we rewrite everything, will save performance. cmd.ClearRenderTarget(false, true, new Color(0, 0, 0, 0)); renderLoop.ExecuteCommandBuffer(cmd); cmd.Dispose(); } // END TEMP } void RenderOpaqueRenderList(CullResults cull, Camera camera, RenderLoop renderLoop, string passName) { if (!debugParameters.displayOpaqueObjects) return; DrawRendererSettings settings = new DrawRendererSettings(cull, camera, new ShaderPassName(passName)); settings.sorting.sortOptions = SortOptions.SortByMaterialThenMesh; settings.inputFilter.SetQueuesOpaque(); settings.rendererConfiguration = RendererConfiguration.PerObjectLightProbe | RendererConfiguration.PerObjectReflectionProbes | RendererConfiguration.PerObjectLightmaps | RendererConfiguration.PerObjectLightProbeProxyVolume; renderLoop.DrawRenderers(ref settings); } void RenderTransparentRenderList(CullResults cull, Camera camera, RenderLoop renderLoop, string passName) { if (!debugParameters.displayTransparentObjects) return; var settings = new DrawRendererSettings(cull, camera, new ShaderPassName(passName)) { rendererConfiguration = RendererConfiguration.PerObjectLightProbe | RendererConfiguration.PerObjectReflectionProbes, sorting = { sortOptions = SortOptions.SortByMaterialThenMesh } }; settings.inputFilter.SetQueuesTransparent(); renderLoop.DrawRenderers(ref settings); } void RenderGBuffer(CullResults cull, Camera camera, RenderLoop renderLoop) { if (debugParameters.useForwardRenderingOnly) { return ; } // setup GBuffer for rendering var cmd = new CommandBuffer { name = "GBuffer Pass" }; cmd.SetRenderTarget(m_gbufferManager.GetGBuffers(cmd), new RenderTargetIdentifier(s_CameraDepthBuffer)); renderLoop.ExecuteCommandBuffer(cmd); cmd.Dispose(); // render opaque objects into GBuffer RenderOpaqueRenderList(cull, camera, renderLoop, "GBuffer"); } void RenderDebugViewMaterial(CullResults cull, Camera camera, RenderLoop renderLoop) { // Render Opaque forward { var cmd = new CommandBuffer { name = "DebugView Material Mode Pass" }; cmd.SetRenderTarget(new RenderTargetIdentifier(s_CameraColorBuffer), new RenderTargetIdentifier(s_CameraDepthBuffer)); cmd.ClearRenderTarget(true, true, new Color(0, 0, 0, 0)); renderLoop.ExecuteCommandBuffer(cmd); cmd.Dispose(); Shader.SetGlobalInt("_DebugViewMaterial", (int)debugParameters.debugViewMaterial); RenderOpaqueRenderList(cull, camera, renderLoop, "DebugViewMaterial"); } // Render GBUffer opaque { Vector4 screenSize = ComputeScreenSize(camera); m_DebugViewMaterialGBuffer.SetVector("_ScreenSize", screenSize); m_DebugViewMaterialGBuffer.SetFloat("_DebugViewMaterial", (float)debugParameters.debugViewMaterial); // m_gbufferManager.BindBuffers(m_DeferredMaterial); // TODO: Bind depth textures var cmd = new CommandBuffer { name = "GBuffer Debug Pass" }; cmd.Blit(null, new RenderTargetIdentifier(s_CameraColorBuffer), m_DebugViewMaterialGBuffer, 0); renderLoop.ExecuteCommandBuffer(cmd); cmd.Dispose(); } // Render forward transparent { RenderTransparentRenderList(cull, camera, renderLoop, "DebugViewMaterial"); } // Last blit { var cmd = new CommandBuffer { name = "Blit DebugView Material Debug" }; cmd.Blit(s_CameraColorBuffer, BuiltinRenderTextureType.CameraTarget); renderLoop.ExecuteCommandBuffer(cmd); cmd.Dispose(); } } Matrix4x4 GetViewProjectionMatrix(Camera camera) { // The actual projection matrix used in shaders is actually massaged a bit to work across all platforms // (different Z value ranges etc.) var gpuProj = GL.GetGPUProjectionMatrix(camera.projectionMatrix, false); var gpuVP = gpuProj * camera.worldToCameraMatrix; return gpuVP; } Vector4 ComputeScreenSize(Camera camera) { return new Vector4(camera.pixelWidth, camera.pixelHeight, 1.0f / camera.pixelWidth, 1.0f / camera.pixelHeight); } void RenderDeferredLighting(Camera camera, RenderLoop renderLoop) { if (debugParameters.useForwardRenderingOnly) { return; } // Bind material data m_LitRenderLoop.Bind(); var invViewProj = GetViewProjectionMatrix(camera).inverse; m_DeferredMaterial.SetMatrix("_InvViewProjMatrix", invViewProj); var screenSize = ComputeScreenSize(camera); m_DeferredMaterial.SetVector("_ScreenSize", screenSize); // m_gbufferManager.BindBuffers(m_DeferredMaterial); // TODO: Bind depth textures var cmd = new CommandBuffer { name = "Deferred Ligthing Pass" }; cmd.Blit(null, new RenderTargetIdentifier(s_CameraColorBuffer), m_DeferredMaterial, 0); renderLoop.ExecuteCommandBuffer(cmd); cmd.Dispose(); } void RenderForward(CullResults cullResults, Camera camera, RenderLoop renderLoop) { // Bind material data m_LitRenderLoop.Bind(); var cmd = new CommandBuffer { name = "Forward Pass" }; cmd.SetRenderTarget(new RenderTargetIdentifier(s_CameraColorBuffer), new RenderTargetIdentifier(s_CameraDepthBuffer)); renderLoop.ExecuteCommandBuffer(cmd); cmd.Dispose(); if (debugParameters.useForwardRenderingOnly) { RenderOpaqueRenderList(cullResults, camera, renderLoop, "Forward"); } RenderTransparentRenderList(cullResults, camera, renderLoop, "Forward"); } void RenderForwardUnlit(CullResults cullResults, Camera camera, RenderLoop renderLoop) { // Bind material data m_LitRenderLoop.Bind(); var cmd = new CommandBuffer { name = "Forward Unlit Pass" }; cmd.SetRenderTarget(new RenderTargetIdentifier(s_CameraColorBuffer), new RenderTargetIdentifier(s_CameraDepthBuffer)); renderLoop.ExecuteCommandBuffer(cmd); cmd.Dispose(); RenderOpaqueRenderList(cullResults, camera, renderLoop, "ForwardUnlit"); RenderTransparentRenderList(cullResults, camera, renderLoop, "ForwardUnlit"); } void FinalPass(RenderLoop renderLoop) { // Those could be tweakable for the neutral tonemapper, but in the case of the LookDev we don't need that const float blackIn = 0.02f; const float whiteIn = 10.0f; const float blackOut = 0.0f; const float whiteOut = 10.0f; const float whiteLevel = 5.3f; const float whiteClip = 10.0f; const float dialUnits = 20.0f; const float halfDialUnits = dialUnits * 0.5f; // converting from artist dial units to easy shader-lerps (0-1) var tonemapCoeff1 = new Vector4((blackIn * dialUnits) + 1.0f, (blackOut * halfDialUnits) + 1.0f, (whiteIn / dialUnits), (1.0f - (whiteOut / dialUnits))); var tonemapCoeff2 = new Vector4(0.0f, 0.0f, whiteLevel, whiteClip / halfDialUnits); m_FinalPassMaterial.SetVector("_ToneMapCoeffs1", tonemapCoeff1); m_FinalPassMaterial.SetVector("_ToneMapCoeffs2", tonemapCoeff2); m_FinalPassMaterial.SetFloat("_EnableToneMap", debugParameters.enableTonemap ? 1.0f : 0.0f); m_FinalPassMaterial.SetFloat("_Exposure", debugParameters.exposure); var cmd = new CommandBuffer { name = "FinalPass" }; // Resolve our HDR texture to CameraTarget. cmd.Blit(s_CameraColorBuffer, BuiltinRenderTextureType.CameraTarget, m_FinalPassMaterial, 0); renderLoop.ExecuteCommandBuffer(cmd); cmd.Dispose(); } void NewFrame() { // update texture caches m_cubeReflTexArray.NewFrame(); } //--------------------------------------------------------------------------------------------------------------------------------------------------- void UpdatePunctualLights(VisibleLight[] visibleLights, ref ShadowOutput shadowOutput) { var lights = new List(); var shadows = new List(); for (int lightIndex = 0; lightIndex < Math.Min(visibleLights.Length, MaxLights); lightIndex++) { var light = visibleLights[lightIndex]; if (light.lightType != LightType.Spot && light.lightType != LightType.Point && light.lightType != LightType.Directional) continue; var additionalLightData = light.light.GetComponent(); var l = new PunctualLightData(); if (light.lightType == LightType.Directional) { l.useDistanceAttenuation = 0.0f; // positionWS store Light direction for directional and is opposite to the forward direction l.positionWS = -light.light.transform.forward; l.invSqrAttenuationRadius = 0.0f; } else { l.useDistanceAttenuation = 1.0f; l.positionWS = light.light.transform.position; l.invSqrAttenuationRadius = 1.0f / (light.range * light.range); } // Correct intensity calculation (Different from Unity) var lightColorR = light.light.intensity * Mathf.GammaToLinearSpace(light.light.color.r); var lightColorG = light.light.intensity * Mathf.GammaToLinearSpace(light.light.color.g); var lightColorB = light.light.intensity * Mathf.GammaToLinearSpace(light.light.color.b); l.color.Set(lightColorR, lightColorG, lightColorB); l.forward = light.light.transform.forward; // Note: Light direction is oriented backward (-Z) l.up = light.light.transform.up; l.right = light.light.transform.right; if (light.lightType == LightType.Spot) { var spotAngle = light.spotAngle; var innerConePercent = AdditionalLightData.GetInnerSpotPercent01(additionalLightData); var cosSpotOuterHalfAngle = Mathf.Clamp(Mathf.Cos(spotAngle * 0.5f * Mathf.Deg2Rad), 0.0f, 1.0f); var cosSpotInnerHalfAngle = Mathf.Clamp(Mathf.Cos(spotAngle * 0.5f * innerConePercent * Mathf.Deg2Rad), 0.0f, 1.0f); // inner cone var val = Mathf.Max(0.001f, (cosSpotInnerHalfAngle - cosSpotOuterHalfAngle)); l.angleScale = 1.0f / val; l.angleOffset = -cosSpotOuterHalfAngle * l.angleScale; } else { // 1.0f, 2.0f are neutral value allowing GetAngleAnttenuation in shader code to return 1.0 l.angleScale = 1.0f; l.angleOffset = 2.0f; } l.diffuseScale = AdditionalLightData.GetAffectDiffuse(additionalLightData) ? 1.0f : 0.0f; l.specularScale = AdditionalLightData.GetAffectSpecular(additionalLightData) ? 1.0f : 0.0f; l.shadowDimmer = AdditionalLightData.GetShadowDimmer(additionalLightData); l.IESIndex = -1; l.cookieIndex = -1; l.shadowIndex = -1; // Setup shadow data arrays bool hasShadows = shadowOutput.GetShadowSliceCountLightIndex(lightIndex) != 0; bool hasNotReachMaxLimit = shadows.Count + (light.lightType == LightType.Point ? 6 : 1) <= MaxShadows; if (hasShadows && hasNotReachMaxLimit) // Note < MaxShadows should be check at shadowOutput creation { // When we have a point light, we assumed that there is 6 consecutive PunctualShadowData l.shadowIndex = shadows.Count; for (int sliceIndex = 0; sliceIndex < shadowOutput.GetShadowSliceCountLightIndex(lightIndex); ++sliceIndex) { PunctualShadowData s = new PunctualShadowData(); int shadowSliceIndex = shadowOutput.GetShadowSliceIndex(lightIndex, sliceIndex); s.worldToShadow = shadowOutput.shadowSlices[shadowSliceIndex].shadowTransform.transpose; // Transpose for hlsl reading ? if (light.lightType == LightType.Spot) { s.shadowType = ShadowType.Spot; } else if (light.lightType == LightType.Point) { s.shadowType = ShadowType.Point; } else { s.shadowType = ShadowType.Directional; } s.bias = light.light.shadowBias; shadows.Add(s); } } lights.Add(l); } s_punctualLightList.SetData(lights.ToArray()); s_punctualShadowList.SetData(shadows.ToArray()); Shader.SetGlobalBuffer("_PunctualLightList", s_punctualLightList); Shader.SetGlobalInt("_PunctualLightCount", lights.Count); Shader.SetGlobalBuffer("_PunctualShadowList", s_punctualShadowList); } void UpdateReflectionProbes(VisibleReflectionProbe[] activeReflectionProbes) { var lights = new List(); for (int lightIndex = 0; lightIndex < Math.Min(activeReflectionProbes.Length, MaxProbes); lightIndex++) { var probe = activeReflectionProbes[lightIndex]; if (probe.texture == null) continue; var l = new EnvLightData(); // CAUTION: localToWorld is the transform for the widget of the reflection probe. i.e the world position of the point use to do the cubemap capture (mean it include the local offset) l.positionWS = probe.localToWorld.GetColumn(3); l.envShapeType = EnvShapeType.None; // TODO: Support sphere in the interface if (probe.boxProjection != 0) { l.envShapeType = EnvShapeType.Box; } // remove scale from the matrix (Scale in this matrix is use to scale the widget) l.right = probe.localToWorld.GetColumn(0); l.right.Normalize(); l.up = probe.localToWorld.GetColumn(1); l.up.Normalize(); l.forward = probe.localToWorld.GetColumn(2); l.forward.Normalize(); // Artists prefer to have blend distance inside the volume! // So we let the current UI but we assume blendDistance is an inside factor instead // Blend distance can't be larger than the max radius // probe.bounds.extents is BoxSize / 2 float maxBlendDist = Mathf.Min(probe.bounds.extents.x, Mathf.Min(probe.bounds.extents.y, probe.bounds.extents.z)); float blendDistance = Mathf.Min(maxBlendDist, probe.blendDistance); l.innerDistance = probe.bounds.extents - new Vector3(blendDistance, blendDistance, blendDistance); l.envIndex = m_cubeReflTexArray.FetchSlice(probe.texture); l.offsetLS = probe.center; // center is misnamed, it is the offset (in local space) from center of the bounding box to the cubemap capture point l.blendDistance = blendDistance; lights.Add(l); } s_envLightList.SetData(lights.ToArray()); Shader.SetGlobalBuffer("_EnvLightList", s_envLightList); Shader.SetGlobalInt("_EnvLightCount", lights.Count); Shader.SetGlobalTexture("_EnvTextures", m_cubeReflTexArray.GetTexCache()); } public override void Render(Camera[] cameras, RenderLoop renderLoop) { if (!m_LitRenderLoop.isInit) { m_LitRenderLoop.RenderInit(renderLoop); } // Do anything we need to do upon a new frame. NewFrame(); // Set Frame constant buffer // TODO... foreach (var camera in cameras) { // Set camera constant buffer // TODO... CullingParameters cullingParams; if (!CullResults.GetCullingParameters(camera, out cullingParams)) continue; m_ShadowPass.UpdateCullingParameters (ref cullingParams); var cullResults = CullResults.Cull(ref cullingParams, renderLoop); renderLoop.SetupCameraProperties(camera); InitAndClearBuffer(camera, renderLoop); RenderGBuffer(cullResults, camera, renderLoop); if (debugParameters.debugViewMaterial != 0) { RenderDebugViewMaterial(cullResults, camera, renderLoop); } else { ShadowOutput shadows; m_ShadowPass.Render(renderLoop, cullResults, out shadows); renderLoop.SetupCameraProperties(camera); // Need to recall SetupCameraProperties after m_ShadowPass.Render UpdatePunctualLights(cullResults.visibleLights, ref shadows); UpdateReflectionProbes(cullResults.visibleReflectionProbes); RenderDeferredLighting(camera, renderLoop); RenderForward(cullResults, camera, renderLoop); RenderForwardUnlit(cullResults, camera, renderLoop); FinalPass(renderLoop); } renderLoop.Submit(); } // Post effects } #if UNITY_EDITOR public override UnityEditor.SupportedRenderingFeatures GetSupportedRenderingFeatures() { var features = new UnityEditor.SupportedRenderingFeatures { reflectionProbe = UnityEditor.SupportedRenderingFeatures.ReflectionProbe.Rotation }; return features; } #endif } }