#ifndef UNITY_COMMON_MATERIAL_INCLUDED #define UNITY_COMMON_MATERIAL_INCLUDED //----------------------------------------------------------------------------- // Helper functions for roughness //----------------------------------------------------------------------------- float PerceptualRoughnessToRoughness(float perceptualRoughness) { return perceptualRoughness * perceptualRoughness; } float RoughnessToPerceptualRoughness(float roughness) { return sqrt(roughness); } float PerceptualSmoothnessToRoughness(float perceptualSmoothness) { return (1.0 - perceptualSmoothness) * (1.0 - perceptualSmoothness); } float PerceptualSmoothnessToPerceptualRoughness(float perceptualSmoothness) { return (1.0 - perceptualSmoothness); } // Using roughness values of 0 leads to INFs and NANs. The only sensible place to use the roughness // value of 0 is IBL, so we do not modify the perceptual roughness which is used to select the MIP map level. // Note: making the constant too small results in aliasing. float ClampRoughnessForAnalyticalLights(float roughness) { return max(roughness, 1.0/1024.0); } // 'bsdfData.roughnessT' and 'bsdfData.roughnessB' are clamped, and are meant to be used with analytical lights. // 'bsdfData.perceptualRoughness' is not clamped, and is meant to be used for IBL. // If IBL needs the linear roughness value for some reason, it can be computed as follows: // float roughness = PerceptualRoughnessToRoughness(bsdfData.perceptualRoughness); void ConvertAnisotropyToRoughness(float perceptualRoughness, float anisotropy, out float roughnessT, out float roughnessB) { float roughness = PerceptualRoughnessToRoughness(perceptualRoughness); // Use the parametrization of Sony Imageworks. // Ref: Revisiting Physically Based Shading at Imageworks, p. 15. roughnessT = roughness * (1 + anisotropy); roughnessB = roughness * (1 - anisotropy); roughnessT = ClampRoughnessForAnalyticalLights(roughnessT); roughnessB = ClampRoughnessForAnalyticalLights(roughnessB); } // ---------------------------------------------------------------------------- // Parallax mapping // ---------------------------------------------------------------------------- // ref https://www.gamedev.net/topic/678043-how-to-blend-world-space-normals/#entry5287707 // assume compositing in world space // Note: Using vtxNormal = float3(0, 0, 1) give the BlendNormalRNM formulation. // TODO: Untested float3 BlendNormalWorldspaceRNM(float3 n1, float3 n2, float3 vtxNormal) { // Build the shortest-arc quaternion float4 q = float4(cross(vtxNormal, n2), dot(vtxNormal, n2) + 1.0) / sqrt(2.0 * (dot(vtxNormal, n2) + 1)); // Rotate the normal return n1 * (q.w * q.w - dot(q.xyz, q.xyz)) + 2 * q.xyz * dot(q.xyz, n1) + 2 * q.w * cross(q.xyz, n1); } // ref http://blog.selfshadow.com/publications/blending-in-detail/ // ref https://gist.github.com/selfshadow/8048308 // Reoriented Normal Mapping // Blending when n1 and n2 are already 'unpacked' and normalised // assume compositing in tangent space float3 BlendNormalRNM(float3 n1, float3 n2) { float3 t = n1.xyz + float3(0.0, 0.0, 1.0); float3 u = n2.xyz * float3(-1.0, -1.0, 1.0); float3 r = (t / t.z) * dot(t, u) - u; return r; } // assume compositing in tangent space float3 BlendNormal(float3 n1, float3 n2) { return normalize(float3(n1.xy * n2.z + n2.xy * n1.z, n1.z * n2.z)); } // Ref: http://http.developer.nvidia.com/GPUGems3/gpugems3_ch01.html / http://www.slideshare.net/icastano/cascades-demo-secrets float3 ComputeTriplanarWeights(float3 normal) { // Determine the blend weights for the 3 planar projections. float3 blendWeights = abs(normal); // Tighten up the blending zone blendWeights = (blendWeights - 0.2) * 7.0; blendWeights = blendWeights * blendWeights * blendWeights; // pow(blendWeights, 3); // Force weights to sum to 1.0 (very important!) blendWeights = max(blendWeights, float3(0.0, 0.0, 0.0)); blendWeights /= dot(blendWeights, 1.0); return blendWeights; } // Planar/Triplanar convention for Unity in world space void GetTriplanarCoordinate(float3 position, out float2 uvXZ, out float2 uvXY, out float2 uvZY) { // Caution: This must follow the same rule as what is use for SurfaceGradient triplanar // TODO: Currently the normal mapping looks wrong without SURFACE_GRADIENT option because we don't handle corretly the tangent space uvXZ = float2(position.z, position.x); uvXY = float2(position.x, position.y); uvZY = float2(position.z, position.y); } float LerpWhiteTo(float b, float t) { float oneMinusT = 1.0 - t; return oneMinusT + b * t; } float3 LerpWhiteTo(float3 b, float t) { float oneMinusT = 1.0 - t; return float3(oneMinusT, oneMinusT, oneMinusT) + b * t; } #endif // UNITY_COMMON_MATERIAL_INCLUDED