//------------------------------------------------------------------------------------- // Fill SurfaceData/Builtin data function //------------------------------------------------------------------------------------- #include "CoreRP/ShaderLibrary/Sampling/SampleUVMapping.hlsl" #include "../MaterialUtilities.hlsl" ////----------------------------------------------------------------------------- //// Texture Mapping (think of LayerTexCoord as simply TexCoordMappings, //// ie no more layers here - cf Lit materials) ////----------------------------------------------------------------------------- // //// //// For easier copying of code for now use a LayerTexCoord wrapping struct. //// We don't have details yet. //// //// NEWLITTODO: Eventually, we could quickly share GetBuiltinData of LitBuiltinData.hlsl //// in our GetSurfaceAndBuiltinData( ) here, since we will use the LayerTexCoord identifier, //// and an identical ComputeLayerTexCoord( ) prototype //// //struct LayerTexCoord //{ // UVMapping base; // // // Store information that will be share by all UVMapping // float3 vertexNormalWS; // TODO: store also object normal map for object triplanar //}; // //// Want to use only one sampler for normalmap/bentnormalmap either we use OS or TS. And either we have normal map or bent normal or both. //// //// Note (compared to Lit shader): //// //// We don't have a layered material with which we are sharing code here like the LayeredLit shader, but we can also save a couple of //// samplers later if we use bentnormals. //// //// _IDX suffix is meaningless here, could use the name SAMPLER_NORMALMAP_ID instead of SAMPLER_NORMALMAP_IDX and replace all //// indirect #ifdef _NORMALMAP_TANGENT_SPACE_IDX #ifdef and _NORMALMAP_IDX tests with the more direct //// shader_feature keywords _NORMALMAP_TANGENT_SPACE and _NORMALMAP. //// //// (Originally in the LayeredLit shader, shader_feature keywords like _NORMALMAP become _NORMALMAP0 but since files are shared, //// LitDataIndividualLayer will use a generic _NORMALMAP_IDX defined before its inclusion by the client LitData or LayeredLitData. //// That way, LitDataIndividualLayer supports multiple inclusions) #ifdef _NORMALMAP_TANGENT_SPACE #if defined(_NORMALMAP) #define SAMPLER_NORMALMAP_ID sampler_NormalMap // TODO: //#elif defined(_BENTNORMALMAP) //#define SAMPLER_NORMALMAP_ID sampler_BentNormalMap #endif #else // TODO: //#error STACKLIT_USES_ONLY_TANGENT_SPACE_FOR_NOW //#if defined(_NORMALMAP) //#define SAMPLER_NORMALMAP_ID sampler_NormalMapOS //#elif defined(_BENTNORMALMAP) //#define SAMPLER_NORMALMAP_ID sampler_BentNormalMapOS //#endif #endif //----------------------------------------------------------------------------- // Texture Mapping //----------------------------------------------------------------------------- #define TEXCOORD_INDEX_UV0 (0) #define TEXCOORD_INDEX_UV1 (1) #define TEXCOORD_INDEX_UV2 (2) #define TEXCOORD_INDEX_UV3 (3) #define TEXCOORD_INDEX_PLANAR_XY (4) #define TEXCOORD_INDEX_PLANAR_YZ (5) #define TEXCOORD_INDEX_PLANAR_ZX (6) #define TEXCOORD_INDEX_TRIPLANAR (7) #define TEXCOORD_INDEX_COUNT (TEXCOORD_INDEX_TRIPLANAR) // Triplanar is not consider as having mapping struct TextureUVMapping { float2 texcoords[TEXCOORD_INDEX_COUNT][2]; #ifdef _USE_TRIPLANAR float3 triplanarWeights[2]; #endif float3 vertexNormalWS; float3 vertexTangentWS[4]; float3 vertexBitangentWS[4]; }; void InitializeMappingData(FragInputs input, out TextureUVMapping uvMapping) { float3 position = GetAbsolutePositionWS(input.positionWS); float2 uvXZ; float2 uvXY; float2 uvZY; // Build the texcoords array. uvMapping.texcoords[TEXCOORD_INDEX_UV0][0] = uvMapping.texcoords[TEXCOORD_INDEX_UV0][1] = input.texCoord0.xy; uvMapping.texcoords[TEXCOORD_INDEX_UV1][0] = uvMapping.texcoords[TEXCOORD_INDEX_UV1][1] = input.texCoord1.xy; uvMapping.texcoords[TEXCOORD_INDEX_UV2][0] = uvMapping.texcoords[TEXCOORD_INDEX_UV2][1] = input.texCoord2.xy; uvMapping.texcoords[TEXCOORD_INDEX_UV3][0] = uvMapping.texcoords[TEXCOORD_INDEX_UV3][1] = input.texCoord3.xy; // planar/triplanar GetTriplanarCoordinate(position, uvXZ, uvXY, uvZY); uvMapping.texcoords[TEXCOORD_INDEX_PLANAR_XY][0] = uvXY; uvMapping.texcoords[TEXCOORD_INDEX_PLANAR_YZ][0] = uvZY; uvMapping.texcoords[TEXCOORD_INDEX_PLANAR_ZX][0] = uvXZ; // If we use local planar mapping, convert to local space position = TransformWorldToObject(position); GetTriplanarCoordinate(position, uvXZ, uvXY, uvZY); uvMapping.texcoords[TEXCOORD_INDEX_PLANAR_XY][1] = uvXY; uvMapping.texcoords[TEXCOORD_INDEX_PLANAR_YZ][1] = uvZY; uvMapping.texcoords[TEXCOORD_INDEX_PLANAR_ZX][1] = uvXZ; #ifdef _USE_TRIPLANAR float3 vertexNormal = input.worldToTangent[2].xyz; uvMapping.triplanarWeights[0] = ComputeTriplanarWeights(vertexNormal); // If we use local planar mapping, convert to local space vertexNormal = TransformWorldToObjectDir(vertexNormal); uvMapping.triplanarWeights[1] = ComputeTriplanarWeights(vertexNormal); #endif // Normal mapping with surface gradient float3 vertexNormalWS = input.worldToTangent[2]; uvMapping.vertexNormalWS = vertexNormalWS; uvMapping.vertexTangentWS[0] = input.worldToTangent[0]; uvMapping.vertexBitangentWS[0] = input.worldToTangent[1]; float3 dPdx = ddx_fine(input.positionWS); float3 dPdy = ddy_fine(input.positionWS); float3 sigmaX = dPdx - dot(dPdx, vertexNormalWS) * vertexNormalWS; float3 sigmaY = dPdy - dot(dPdy, vertexNormalWS) * vertexNormalWS; //float flipSign = dot(sigmaY, cross(vertexNormalWS, sigmaX) ) ? -1.0 : 1.0; float flipSign = dot(dPdy, cross(vertexNormalWS, dPdx)) < 0.0 ? -1.0 : 1.0; // gives same as the commented out line above SurfaceGradientGenBasisTB(vertexNormalWS, sigmaX, sigmaY, flipSign, input.texCoord1, uvMapping.vertexTangentWS[1], uvMapping.vertexBitangentWS[1]); SurfaceGradientGenBasisTB(vertexNormalWS, sigmaX, sigmaY, flipSign, input.texCoord2, uvMapping.vertexTangentWS[2], uvMapping.vertexBitangentWS[2]); SurfaceGradientGenBasisTB(vertexNormalWS, sigmaX, sigmaY, flipSign, input.texCoord3, uvMapping.vertexTangentWS[3], uvMapping.vertexBitangentWS[3]); } float4 SampleTexture2DScaleBias(TEXTURE2D_ARGS(textureName, samplerName), float textureNameUV, float textureNameUVLocal, float4 textureNameST, TextureUVMapping uvMapping) { return SAMPLE_TEXTURE2D(textureName, samplerName, (uvMapping.texcoords[textureNameUV][textureNameUVLocal] * textureNameST.xy + textureNameST.zw)); } // If we use triplanar on any of the properties, then we enable the triplanar path float4 SampleTexture2DTriplanarScaleBias(TEXTURE2D_ARGS(textureName, samplerName), float textureNameUV, float textureNameUVLocal, float4 textureNameST, TextureUVMapping uvMapping) { #ifdef _USE_TRIPLANAR if (textureNameUV == TEXCOORD_INDEX_TRIPLANAR) { float4 val = float4(0.0, 0.0, 0.0, 0.0); if (uvMapping.triplanarWeights[textureNameUVLocal].x > 0.0) val += uvMapping.triplanarWeights[textureNameUVLocal].x * SampleTexture2DScaleBias(TEXTURE2D_PARAM(textureName, samplerName), TEXCOORD_INDEX_PLANAR_YZ, textureNameUVLocal, textureNameST, uvMapping); if (uvMapping.triplanarWeights[textureNameUVLocal].y > 0.0) val += uvMapping.triplanarWeights[textureNameUVLocal].y * SampleTexture2DScaleBias(TEXTURE2D_PARAM(textureName, samplerName), TEXCOORD_INDEX_PLANAR_ZX, textureNameUVLocal, textureNameST, uvMapping); if (uvMapping.triplanarWeights[textureNameUVLocal].z > 0.0) val += uvMapping.triplanarWeights[textureNameUVLocal].z * SampleTexture2DScaleBias(TEXTURE2D_PARAM(textureName, samplerName), TEXCOORD_INDEX_PLANAR_XY, textureNameUVLocal, textureNameST, uvMapping); return val; } else { #endif // _USE_TRIPLANAR return SampleTexture2DScaleBias(TEXTURE2D_PARAM(textureName, samplerName), textureNameUV, textureNameUVLocal, textureNameST, uvMapping); #ifdef _USE_TRIPLANAR } #endif } float3 SampleTexture2DTriplanarNormalScaleBias(TEXTURE2D_ARGS(textureName, samplerName), float textureNameUV, float textureNameUVLocal, float4 textureNameST, float textureNameObjSpace, TextureUVMapping uvMapping, float2 scale) { if (textureNameObjSpace) { // TODO: obj triplanar (need to do * 2 - 1 before blending) // We forbid scale in case of object space as it make no sense // Decompress normal ourselve float3 normalOS = SampleTexture2DTriplanarScaleBias(TEXTURE2D_PARAM(textureName, samplerName), textureNameUV, textureNameUVLocal, textureNameST, uvMapping) * 2.0 - 1.0; // no need to renormalize normalOS for SurfaceGradientFromPerturbedNormal return SurfaceGradientFromPerturbedNormal(uvMapping.vertexNormalWS, TransformObjectToWorldDir(normalOS)); } else { #ifdef _USE_TRIPLANAR if (textureNameUV == TEXCOORD_INDEX_TRIPLANAR) { float2 derivXplane; float2 derivYPlane; float2 derivZPlane; derivXplane = derivYPlane = derivZPlane = float2(0.0, 0.0); if (uvMapping.triplanarWeights[textureNameUVLocal].x > 0.0) derivXplane = uvMapping.triplanarWeights[textureNameUVLocal].x * UnpackDerivativeNormalRGorAG(SampleTexture2DScaleBias(TEXTURE2D_PARAM(textureName, samplerName), TEXCOORD_INDEX_PLANAR_YZ, textureNameUVLocal, textureNameST, uvMapping), scale); if (uvMapping.triplanarWeights[textureNameUVLocal].y > 0.0) derivYPlane = uvMapping.triplanarWeights[textureNameUVLocal].y * UnpackDerivativeNormalRGorAG(SampleTexture2DScaleBias(TEXTURE2D_PARAM(textureName, samplerName), TEXCOORD_INDEX_PLANAR_ZX, textureNameUVLocal, textureNameST, uvMapping), scale); if (uvMapping.triplanarWeights[textureNameUVLocal].z > 0.0) derivZPlane = uvMapping.triplanarWeights[textureNameUVLocal].z * UnpackDerivativeNormalRGorAG(SampleTexture2DScaleBias(TEXTURE2D_PARAM(textureName, samplerName), TEXCOORD_INDEX_PLANAR_XY, textureNameUVLocal, textureNameST, uvMapping), scale); // Assume derivXplane, derivYPlane and derivZPlane sampled using (z,y), (z,x) and (x,y) respectively. float3 volumeGrad = float3(derivZPlane.x + derivYPlane.y, derivZPlane.y + derivXplane.y, derivXplane.x + derivYPlane.x); return SurfaceGradientFromVolumeGradient(uvMapping.vertexNormalWS, volumeGrad); } #endif float2 deriv = UnpackDerivativeNormalRGorAG(SampleTexture2DScaleBias(TEXTURE2D_PARAM(textureName, samplerName), textureNameUV, textureNameUVLocal, textureNameST, uvMapping)); if (textureNameUV <= TEXCOORD_INDEX_UV3) { return SurfaceGradientFromTBN(deriv, uvMapping.vertexTangentWS[textureNameUV], uvMapping.vertexBitangentWS[textureNameUV]); } else { float3 volumeGrad; if (textureNameUV == TEXCOORD_INDEX_PLANAR_YZ) volumeGrad = float3(0.0, deriv.y, deriv.x); else if (textureNameUV == TEXCOORD_INDEX_PLANAR_ZX) volumeGrad = float3(deriv.y, 0.0, deriv.x); else if (textureNameUV == TEXCOORD_INDEX_PLANAR_XY) volumeGrad = float3(deriv.x, deriv.y, 0.0); return SurfaceGradientFromVolumeGradient(uvMapping.vertexNormalWS, volumeGrad); } } } #define SAMPLE_TEXTURE2D_SCALE_BIAS(name) SampleTexture2DTriplanarScaleBias(name, sampler##name, name##UV, name##UVLocal, name##_ST, uvMapping) #define SAMPLE_TEXTURE2D_NORMAL_SCALE_BIAS(name, scale) SampleTexture2DTriplanarNormalScaleBias(name, sampler##name, name##UV, name##UVLocal, name##_ST, name##ObjSpace, uvMapping, scale) //----------------------------------------------------------------------------- // GetSurfaceAndBuiltinData //----------------------------------------------------------------------------- // // cf with // LitData.hlsl:GetSurfaceAndBuiltinData() // LitDataIndividualLayer.hlsl:GetSurfaceData( ) // LitBuiltinData.hlsl:GetBuiltinData() // // Here we can combine them // void GetSurfaceAndBuiltinData(FragInputs input, float3 V, inout PositionInputs posInput, out SurfaceData surfaceData, out BuiltinData builtinData) { ApplyDoubleSidedFlipOrMirror(input); // Apply double sided flip on the vertex normal. TextureUVMapping uvMapping; InitializeMappingData(input, uvMapping); // ------------------------------------------------------------- // Surface Data: // ------------------------------------------------------------- float alpha = SAMPLE_TEXTURE2D_SCALE_BIAS(_BaseColorMap).a * _BaseColor.a; #ifdef _ALPHATEST_ON //NEWLITTODO: Once we include those passes in the main StackLit.shader, add handling of CUTOFF_TRANSPARENT_DEPTH_PREPASS and _POSTPASS // and the related properties (in the .shader) and uniforms (in the StackLitProperties file) _AlphaCutoffPrepass, _AlphaCutoffPostpass DoAlphaTest(alpha, _AlphaCutoff); #endif surfaceData.baseColor = SAMPLE_TEXTURE2D_SCALE_BIAS(_BaseColorMap).rgb * _BaseColor.rgb; float3 gradient = SAMPLE_TEXTURE2D_NORMAL_SCALE_BIAS(_NormalMap, float2(_NormalScale.xx)); //TODO: bentNormalTS surfaceData.perceptualSmoothnessA = dot(SAMPLE_TEXTURE2D_SCALE_BIAS(_SmoothnessAMap), _SmoothnessAMapChannelMask); surfaceData.perceptualSmoothnessA = lerp(_SmoothnessARange.x, _SmoothnessARange.y, surfaceData.perceptualSmoothnessA); surfaceData.perceptualSmoothnessA = lerp(_SmoothnessA, surfaceData.perceptualSmoothnessA, _SmoothnessAUseMap); surfaceData.perceptualSmoothnessB = dot(SAMPLE_TEXTURE2D_SCALE_BIAS(_SmoothnessBMap), _SmoothnessBMapChannelMask); surfaceData.perceptualSmoothnessB = lerp(_SmoothnessBRange.x, _SmoothnessBRange.y, surfaceData.perceptualSmoothnessB); surfaceData.perceptualSmoothnessB = lerp(_SmoothnessB, surfaceData.perceptualSmoothnessB, _SmoothnessBUseMap); // TODOSTACKLIT: lobe weighting surfaceData.lobeMix = _LobeMix; // TODO: Ambient occlusion, detail mask. surfaceData.metallic = dot(SAMPLE_TEXTURE2D_SCALE_BIAS(_MetallicMap), _MetallicMapChannelMask); surfaceData.metallic = lerp(_MetallicRange.x, _MetallicRange.y, surfaceData.metallic); surfaceData.metallic = lerp(_Metallic, surfaceData.metallic, _MetallicUseMap); // These static material feature allow compile time optimization // TODO: As we add features, or-set the flags eg MATERIALFEATUREFLAGS_LIT_* with #ifdef // on corresponding _MATERIAL_FEATURE_* shader_feature kerwords (set by UI) so the compiler // knows the value of surfaceData.materialFeatures. surfaceData.materialFeatures = MATERIALFEATUREFLAGS_LIT_STANDARD; // ------------------------------------------------------------- // Surface Data Part 2 (outsite GetSurfaceData( ) in Lit shader): // ------------------------------------------------------------- // Convert back to world space normal surfaceData.normalWS = SurfaceGradientResolveNormal(input.worldToTangent[2], gradient); // TODO: decal etc. #if defined(DEBUG_DISPLAY) if (_DebugMipMapMode != DEBUGMIPMAPMODE_NONE) { surfaceData.baseColor = GetTextureDataDebug(_DebugMipMapMode, texcoords[_BaseColorMapUV], _BaseColorMap, _BaseColorMap_TexelSize, _BaseColorMap_MipInfo, surfaceData.baseColor); surfaceData.metallic = 0; } #endif // ------------------------------------------------------------- // Builtin Data: // ------------------------------------------------------------- // NEWLITTODO: for all BuiltinData, might need to just refactor and use a comon function like that // contained in LitBuiltinData.hlsl builtinData.opacity = alpha; builtinData.bakeDiffuseLighting = float3(0.0, 0.0, 0.0); // Emissive Intensity is only use here, but is part of BuiltinData to enforce UI parameters as we want the users to fill one color and one intensity builtinData.emissiveIntensity = _EmissiveIntensity; // We still store intensity here so we can reuse it with debug code builtinData.emissiveColor = _EmissiveColor * builtinData.emissiveIntensity * lerp(float3(1.0, 1.0, 1.0), surfaceData.baseColor.rgb, _AlbedoAffectEmissive); builtinData.emissiveColor *= SAMPLE_TEXTURE2D_SCALE_BIAS(_EmissiveColorMap).rgb; builtinData.velocity = float2(0.0, 0.0); //NEWLITTODO: shader feature SHADOWS_SHADOWMASK not there yet. builtinData.shadowMask0 = 0.0; builtinData.shadowMask1 = 0.0; builtinData.shadowMask2 = 0.0; builtinData.shadowMask3 = 0.0; #if (SHADERPASS == SHADERPASS_DISTORTION) || defined(DEBUG_DISPLAY) float3 distortion = SAMPLE_TEXTURE2D(_DistortionVectorMap, sampler_DistortionVectorMap, input.texCoord0).rgb; distortion.rg = distortion.rg * _DistortionVectorScale.xx + _DistortionVectorBias.xx; builtinData.distortion = distortion.rg * _DistortionScale; builtinData.distortionBlur = clamp(distortion.b * _DistortionBlurScale, 0.0, 1.0) * (_DistortionBlurRemapMax - _DistortionBlurRemapMin) + _DistortionBlurRemapMin; #else builtinData.distortion = float2(0.0, 0.0); builtinData.distortionBlur = 0.0; #endif builtinData.depthOffset = 0.0; }