#ifndef UNITY_IMAGE_BASED_LIGHTING_INCLUDED #define UNITY_IMAGE_BASED_LIGHTING_INCLUDED #include "CommonLighting.hlsl" #include "CommonMaterial.hlsl" #include "BSDF.hlsl" #include "Sampling.hlsl" // TODO: We need to change this hard limit! #ifndef UNITY_SPECCUBE_LOD_STEPS #define UNITY_SPECCUBE_LOD_STEPS 6 #endif //----------------------------------------------------------------------------- // Util image based lighting //----------------------------------------------------------------------------- // Performs a *non-linear* remapping which improves the perceptual roughness distribution // and adds reflection (contact) hardening. The *approximated* version. float perceptualRoughnessToMipmapLevel(float perceptualRoughness) { perceptualRoughness = perceptualRoughness * (1.7 - 0.7 * perceptualRoughness); return perceptualRoughness * UNITY_SPECCUBE_LOD_STEPS; } // Performs a *non-linear* remapping which improves the perceptual roughness distribution // and adds reflection (contact) hardening. The *accurate* version. // TODO: optimize! float perceptualRoughnessToMipmapLevel(float perceptualRoughness, float NdotR) { float m = PerceptualRoughnessToRoughness(perceptualRoughness); // Remap to spec power. See eq. 21 in --> https://dl.dropboxusercontent.com/u/55891920/papers/mm_brdf.pdf float n = (2.0 / max(FLT_EPSILON, m * m)) - 2.0; // Remap from n_dot_h formulation to n_dot_r. See section "Pre-convolved Cube Maps vs Path Tracers" --> https://s3.amazonaws.com/docs.knaldtech.com/knald/1.0.0/lys_power_drops.html n /= (4.0 * max(NdotR, FLT_EPSILON)); // remap back to square root of real roughness (0.25 include both the sqrt root of the conversion and sqrt for going from roughness to perceptualRoughness) perceptualRoughness = pow(2.0 / (n + 2.0), 0.25); return perceptualRoughness * UNITY_SPECCUBE_LOD_STEPS; } // Performs *linear* remapping for runtime EnvMap filtering. float mipmapLevelToPerceptualRoughness(float mipmapLevel) { return saturate(mipmapLevel / UNITY_SPECCUBE_LOD_STEPS); } // Ref: See "Moving Frostbite to PBR" Listing 22 // This formulation is for GGX only (with smith joint visibility or regular) float3 GetSpecularDominantDir(float3 N, float3 R, float roughness) { float a = 1.0 - roughness; float lerpFactor = a * (sqrt(a) + roughness); // The result is not normalized as we fetch in a cubemap return lerp(N, R, lerpFactor); } //----------------------------------------------------------------------------- // Anisotropic image based lighting //----------------------------------------------------------------------------- // To simulate the streching of highlight at grazing angle for IBL we shrink the roughness // which allow to fake an anisotropic specular lobe. // Ref: http://www.frostbite.com/2015/08/stochastic-screen-space-reflections/ - slide 84 float AnisotropicStrechAtGrazingAngle(float roughness, float perceptualRoughness, float NdotV) { return roughness * lerp(saturate(NdotV * 2.0), 1.0, perceptualRoughness); } //----------------------------------------------------------------------------- // Coordinate system conversion //----------------------------------------------------------------------------- // Transforms the unit vector from the spherical to the Cartesian (right-handed, Z up) coordinate. float3 SphericalToCartesian(float phi, float cosTheta) { float sinPhi, cosPhi; sincos(phi, sinPhi, cosPhi); float sinTheta = sqrt(saturate(1.0 - cosTheta * cosTheta)); return float3(sinTheta * cosPhi, sinTheta * sinPhi, cosTheta); } // Converts Cartesian coordinates given in the right-handed coordinate system // with Z pointing upwards (OpenGL style) to the coordinates in the left-handed // coordinate system with Y pointing up and Z facing forward (DirectX style). float3 TransformGLtoDX(float3 v) { return v.xzy; } // Performs conversion from equiareal map coordinates to Cartesian (DirectX cubemap) ones. float3 ConvertEquiarealToCubemap(float u, float v) { float phi = TWO_PI - TWO_PI * u; float cosTheta = 1.0 - 2.0 * v; return TransformGLtoDX(SphericalToCartesian(phi, cosTheta)); } // ---------------------------------------------------------------------------- // Importance sampling BSDF functions // ---------------------------------------------------------------------------- // Performs uniform sampling of the unit disk. // Ref: PBRT v3, p. 777. float2 SampleDiskUniform(float2 u) { float r = sqrt(u.x); float phi = TWO_PI * u.y; float sinPhi, cosPhi; sincos(phi, sinPhi, cosPhi); return r * float2(cosPhi, sinPhi); } // Performs cosine-weighted sampling of the hemisphere. // Ref: PBRT v3, p. 780. void SampleHemisphereCosine(float2 u, float3x3 localToWorld, out float3 L, out float NdotL) { float3 localL; // Since we don't really care about the area distortion, // we substitute uniform disk sampling for the concentric one. localL.xy = SampleDiskUniform(u); // Project the point from the disk onto the hemisphere. localL.z = sqrt(1.0 - u.x); NdotL = localL.z; L = mul(localL, localToWorld); } void SampleGGXDir(float2 u, float3 V, float3x3 localToWorld, float roughness, out float3 L, out float NdotL, out float NdotH, out float VdotH, bool VeqN = false) { // GGX NDF sampling float cosTheta = sqrt((1.0 - u.x) / (1.0 + (roughness * roughness - 1.0) * u.x)); float phi = TWO_PI * u.y; float3 localH = SphericalToCartesian(phi, cosTheta); NdotH = cosTheta; float3 localV; if (VeqN) { // localV == localN localV = float3(0.0, 0.0, 1.0); VdotH = NdotH; } else { localV = mul(V, transpose(localToWorld)); VdotH = saturate(dot(localV, localH)); } // Compute { localL = reflect(-localV, localH) } float3 localL = -localV + 2.0 * VdotH * localH; NdotL = localL.z; L = mul(localL, localToWorld); } // ref: http://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v3.pdf p26 void SampleAnisoGGXDir(float2 u, float3 V, float3 N, float3 tangentX, float3 tangentY, float roughnessT, float roughnessB, out float3 H, out float3 L) { // AnisoGGX NDF sampling H = sqrt(u.x / (1.0 - u.x)) * (roughnessT * cos(TWO_PI * u.y) * tangentX + roughnessB * sin(TWO_PI * u.y) * tangentY) + N; H = normalize(H); // Convert sample from half angle to incident angle L = 2.0 * saturate(dot(V, H)) * H - V; } // weightOverPdf return the weight (without the diffuseAlbedo term) over pdf. diffuseAlbedo term must be apply by the caller. void ImportanceSampleLambert(float2 u, float3x3 localToWorld, out float3 L, out float NdotL, out float weightOverPdf) { SampleHemisphereCosine(u, localToWorld, L, NdotL); // Importance sampling weight for each sample // pdf = N.L / PI // weight = fr * (N.L) with fr = diffuseAlbedo / PI // weight over pdf is: // weightOverPdf = (diffuseAlbedo / PI) * (N.L) / (N.L / PI) // weightOverPdf = diffuseAlbedo // diffuseAlbedo is apply outside the function weightOverPdf = 1.0; } // weightOverPdf return the weight (without the Fresnel term) over pdf. Fresnel term must be apply by the caller. void ImportanceSampleGGX(float2 u, float3 V, float3x3 localToWorld, float roughness, float NdotV, out float3 L, out float VdotH, out float NdotL, out float weightOverPdf) { float NdotH; SampleGGXDir(u, V, localToWorld, roughness, L, NdotL, NdotH, VdotH); // Importance sampling weight for each sample // pdf = D(H) * (N.H) / (4 * (L.H)) // weight = fr * (N.L) with fr = F(H) * G(V, L) * D(H) / (4 * (N.L) * (N.V)) // weight over pdf is: // weightOverPdf = F(H) * G(V, L) * (L.H) / ((N.H) * (N.V)) // weightOverPdf = F(H) * 4 * (N.L) * V(V, L) * (L.H) / (N.H) with V(V, L) = G(V, L) / (4 * (N.L) * (N.V)) // Remind (L.H) == (V.H) // F is apply outside the function float Vis = V_SmithJointGGX(NdotL, NdotV, roughness); weightOverPdf = 4.0 * Vis * NdotL * VdotH / NdotH; } // weightOverPdf return the weight (without the Fresnel term) over pdf. Fresnel term must be apply by the caller. void ImportanceSampleAnisoGGX( float2 u, float3 V, float3 N, float3 tangentX, float3 tangentY, float roughnessT, float roughnessB, float NdotV, out float3 L, out float VdotH, out float NdotL, out float weightOverPdf) { float3 H; SampleAnisoGGXDir(u, V, N, tangentX, tangentY, roughnessT, roughnessB, H, L); float NdotH = saturate(dot(N, H)); // Note: since L and V are symmetric around H, LdotH == VdotH VdotH = saturate(dot(V, H)); NdotL = saturate(dot(N, L)); // Importance sampling weight for each sample // pdf = D(H) * (N.H) / (4 * (L.H)) // weight = fr * (N.L) with fr = F(H) * G(V, L) * D(H) / (4 * (N.L) * (N.V)) // weight over pdf is: // weightOverPdf = F(H) * G(V, L) * (L.H) / ((N.H) * (N.V)) // weightOverPdf = F(H) * 4 * (N.L) * V(V, L) * (L.H) / (N.H) with V(V, L) = G(V, L) / (4 * (N.L) * (N.V)) // Remind (L.H) == (V.H) // F is apply outside the function // For anisotropy we must not saturate these values float TdotV = dot(tangentX, V); float BdotV = dot(tangentY, V); float TdotL = dot(tangentX, L); float BdotL = dot(tangentY, L); float Vis = V_SmithJointGGXAniso(TdotV, BdotV, NdotV, TdotL, BdotL, NdotL, roughnessT, roughnessB); weightOverPdf = 4.0 * Vis * NdotL * VdotH / NdotH; } // ---------------------------------------------------------------------------- // Pre-integration // ---------------------------------------------------------------------------- // Ref: Listing 18 in "Moving Frostbite to PBR" + https://knarkowicz.wordpress.com/2014/12/27/analytical-dfg-term-for-ibl/ float4 IntegrateGGXAndDisneyFGD(float3 V, float3 N, float roughness, uint sampleCount = 4096) { float NdotV = saturate(dot(N, V)); float4 acc = float4(0.0, 0.0, 0.0, 0.0); // Add some jittering on Hammersley2d float2 randNum = InitRandom(V.xy * 0.5 + 0.5); float3x3 localToWorld = GetLocalFrame(N); for (uint i = 0; i < sampleCount; ++i) { float2 u = frac(randNum + Hammersley2d(i, sampleCount)); float VdotH; float NdotL; float weightOverPdf; float3 L; // Unused ImportanceSampleGGX(u, V, localToWorld, roughness, NdotV, L, VdotH, NdotL, weightOverPdf); if (NdotL > 0.0) { // Integral is // 1 / NumSample * \int[ L * fr * (N.L) / pdf ] with pdf = D(H) * (N.H) / (4 * (L.H)) and fr = F(H) * G(V, L) * D(H) / (4 * (N.L) * (N.V)) // This is split in two part: // A) \int[ L * (N.L) ] // B) \int[ F(H) * 4 * (N.L) * V(V, L) * (L.H) / (N.H) ] with V(V, L) = G(V, L) / (4 * (N.L) * (N.V)) // = \int[ F(H) * weightOverPdf ] // Recombine at runtime with: ( f0 * weightOverPdf * (1 - Fc) + f90 * weightOverPdf * Fc ) with Fc =(1 - V.H)^5 float Fc = pow(1.0 - VdotH, 5.0); acc.x += (1.0 - Fc) * weightOverPdf; acc.y += Fc * weightOverPdf; } // for Disney we still use a Cosine importance sampling, true Disney importance sampling imply a look up table ImportanceSampleLambert(u, localToWorld, L, NdotL, weightOverPdf); if (NdotL > 0.0) { float3 H = normalize(L + V); float LdotH = dot(L, H); float disneyDiffuse = DisneyDiffuse(NdotV, NdotL, LdotH, RoughnessToPerceptualRoughness(roughness)); acc.z += disneyDiffuse * weightOverPdf; } } return acc / sampleCount; } // Ref: Listing 19 in "Moving Frostbite to PBR" float4 IntegrateLD(TEXTURECUBE_ARGS(tex, sampl), float3 V, float3 N, float roughness, float maxMipLevel, float invOmegaP, uint sampleCount, // Must be a Fibonacci number bool prefilter) { float3x3 localToWorld = GetLocalFrame(N); float3 lightInt = float3(0.0, 0.0, 0.0); float cbsdfInt = 0.0; for (uint i = 0; i < sampleCount; ++i) { float2 u = Fibonacci2d(i, sampleCount); // Bias samples towards the mirror direction to reduce variance. // This will have a side effect of making the reflection sharper. // Ref: Stochastic Screen-Space Reflections, p. 67. const float bias = 0.2; u.x = lerp(u.x, 0.0, bias); float3 L; float NdotL, NdotH, VdotH; SampleGGXDir(u, V, localToWorld, roughness, L, NdotL, NdotH, VdotH, true); float mipLevel; if (!prefilter) // BRDF importance sampling { mipLevel = 0; } else // Prefiltered BRDF importance sampling { // Use lower MIP-map levels for fetching samples with low probabilities // in order to reduce the variance. // Ref: http://http.developer.nvidia.com/GPUGems3/gpugems3_ch20.html // // pdf = D * NdotH * jacobian, where jacobian = 1.0 / (4* LdotH). // // Since L and V are symmetric around H, LdotH == VdotH. // Since we pre-integrate the result for the normal direction, // N == V and then NdotH == LdotH. Therefore, the BRDF's pdf // can be simplified: // pdf = D * NdotH / (4 * LdotH) = D * 0.25; // // - OmegaS : Solid angle associated to a sample // - OmegaP : Solid angle associated to a pixel of the cubemap float invPdf = D_GGX_Inverse(NdotH, roughness) * 4.0; // TODO: check the accuracy of the sample's solid angle fit for GGX. float omegaS = rcp(sampleCount) * invPdf; // invOmegaP is precomputed on CPU and provide as a parameter of the function // float omegaP = FOUR_PI / (6.0f * cubemapWidth * cubemapWidth); mipLevel = 0.5 * log2(omegaS * invOmegaP); // Bias the MIP map level to compensate for the importance sampling bias. // This will blur the reflection. // TODO: find a more accurate MIP bias function. mipLevel = lerp(mipLevel, maxMipLevel, bias); // All MIP map levels beyond UNITY_SPECCUBE_LOD_STEPS contain invalid data. mipLevel = min(mipLevel, UNITY_SPECCUBE_LOD_STEPS); } if (NdotL > 0.0) { // TODO: use a Gaussian-like filter to generate the MIP pyramid. float3 val = SAMPLE_TEXTURECUBE_LOD(tex, sampl, L, mipLevel).rgb; // ********************************************************************************* // Our goal is to use Monte-Carlo integration with importance sampling to evaluate // X(V) = Integral{Radiance(L) * CBSDF(L, N, V) dL} / Integral{CBSDF(L, N, V) dL}. // CBSDF = F * D * G * NdotL / (4 * NdotL * NdotV) = F * D * G / (4 * NdotV). // PDF = D * NdotH / (4 * LdotH). // Weight = CBSDF / PDF = F * G * LdotH / (NdotV * NdotH). // Since we perform filtering with the assumption that (V == N), // (LdotH == NdotH) && (NdotV == 1) && (Weight == F * G). // We use the approximation of Brian Karis from "Real Shading in Unreal Engine 4": // Weight ≈ NdotL, which produces nearly identical results in practice. // ********************************************************************************* lightInt += NdotL * val; cbsdfInt += NdotL; } } return float4(lightInt / cbsdfInt, 1.0); } // Searches the row 'j' containing 'n' elements of 'haystack' and // returns the index of the first element greater or equal to 'needle'. uint BinarySearchRow(uint j, float needle, TEXTURE2D(haystack), uint n) { uint i = n - 1; float v = LOAD_TEXTURE2D(haystack, uint2(i, j)).r; if (needle < v) { i = 0; for (uint b = 1 << firstbithigh(n - 1); b != 0; b >>= 1) { uint p = i | b; v = LOAD_TEXTURE2D(haystack, uint2(p, j)).r; if (v <= needle) { i = p; } // Move to the right. } } return i; } float4 IntegrateLD_MIS(TEXTURECUBE_ARGS(envMap, sampler_envMap), TEXTURE2D(marginalRowDensities), TEXTURE2D(conditionalDensities), float3 V, float3 N, float roughness, float invOmegaP, uint width, uint height, uint sampleCount, bool prefilter) { float3x3 localToWorld = GetLocalFrame(N); float2 randNum = InitRandom(V.xy * 0.5 + 0.5); float3 lightInt = float3(0.0, 0.0, 0.0); float cbsdfInt = 0.0; /* // Dedicate 50% of samples to light sampling at 1.0 roughness. // Only perform BSDF sampling when roughness is below 0.5. const int lightSampleCount = lerp(0, sampleCount / 2, saturate(2.0 * roughness - 1.0)); const int bsdfSampleCount = sampleCount - lightSampleCount; */ // The value of the integral of intensity values of the environment map (as a 2D step function). float envMapInt2dStep = LOAD_TEXTURE2D(marginalRowDensities, uint2(height, 0)).r; // Since we are using equiareal mapping, we need to divide by the area of the sphere. float envMapIntSphere = envMapInt2dStep * INV_FOUR_PI; // Perform light importance sampling. for (uint i = 0; i < sampleCount; i++) { float2 s = frac(randNum + Hammersley2d(i, sampleCount)); // Sample a row from the marginal distribution. uint y = BinarySearchRow(0, s.x, marginalRowDensities, height - 1); // Sample a column from the conditional distribution. uint x = BinarySearchRow(y, s.y, conditionalDensities, width - 1); // Compute the coordinates of the sample. // Note: we take the sample in between two texels, and also apply the half-texel offset. // We could compute fractional coordinates at the cost of 4 extra texel samples. float u = saturate((float)x / width + 1.0 / width); float v = saturate((float)y / height + 1.0 / height); float3 L = ConvertEquiarealToCubemap(u, v); float NdotL = saturate(dot(N, L)); if (NdotL > 0.0) { float3 val = SAMPLE_TEXTURECUBE_LOD(envMap, sampler_envMap, L, 0).rgb; float pdf = (val.r + val.g + val.b) / envMapIntSphere; if (pdf > 0.0) { // (N == V) && (acos(VdotL) == 2 * acos(NdotH)). float NdotH = sqrt(NdotL * 0.5 + 0.5); // ********************************************************************************* // Our goal is to use Monte-Carlo integration with importance sampling to evaluate // X(V) = Integral{Radiance(L) * CBSDF(L, N, V) dL} / Integral{CBSDF(L, N, V) dL}. // CBSDF = F * D * G * NdotL / (4 * NdotL * NdotV) = F * D * G / (4 * NdotV). // Weight = CBSDF / PDF. // We use two approximations of Brian Karis from "Real Shading in Unreal Engine 4": // (F * G ≈ NdotL) && (NdotV == 1). // Weight = D * NdotL / (4 * PDF). // ********************************************************************************* float weight = D_GGX(NdotH, roughness) * NdotL / (4.0 * pdf); lightInt += weight * val; cbsdfInt += weight; } } } // Prevent NaNs arising from the division of 0 by 0. cbsdfInt = max(cbsdfInt, FLT_MIN); return float4(lightInt / cbsdfInt, 1.0); } #endif // UNITY_IMAGE_BASED_LIGHTING_INCLUDED