#ifndef UNITY_ENTITY_LIGHTING_INCLUDED #define UNITY_ENTITY_LIGHTING_INCLUDED #include "common.hlsl" // TODO: Check if PI is correctly handled! // Ref: "Efficient Evaluation of Irradiance Environment Maps" from ShaderX 2 float3 SHEvalLinearL0L1(float3 N, float4 shAr, float4 shAg, float4 shAb) { float4 vA = float4(N, 1.0); float3 x1; // Linear (L1) + constant (L0) polynomial terms x1.r = dot(shAr, vA); x1.g = dot(shAg, vA); x1.b = dot(shAb, vA); return x1; } float3 SHEvalLinearL2(float3 N, float4 shBr, float4 shBg, float4 shBb, float4 shC) { float3 x2; // 4 of the quadratic (L2) polynomials float4 vB = N.xyzz * N.yzzx; x2.r = dot(shBr, vB); x2.g = dot(shBg, vB); x2.b = dot(shBb, vB); // Final (5th) quadratic (L2) polynomial float vC = N.x * N.x - N.y * N.y; float3 x3 = shC.rgb * vC; return x2 + x3; } float3 SampleSH9(float4 SHCoefficients[7], float3 N) { float4 shAr = SHCoefficients[0]; float4 shAg = SHCoefficients[1]; float4 shAb = SHCoefficients[2]; float4 shBr = SHCoefficients[3]; float4 shBg = SHCoefficients[4]; float4 shBb = SHCoefficients[5]; float4 shCr = SHCoefficients[6]; // Linear + constant polynomial terms float3 res = SHEvalLinearL0L1(N, shAr, shAg, shAb); // Quadratic polynomials res += SHEvalLinearL2(N, shBr, shBg, shBb, shCr); return res; } // This sample a 3D volume storing SH // Volume is store as 3D texture with 4 R, G, B, X set of 4 coefficient store atlas in same 3D texture. X unused. // TODO: the packing here is innefficient as we will fetch values far away from each other and they may not fit into the cache // Suggest we pack only RGB not X and continuous float3 SampleProbeVolumeSH4(TEXTURE3D_ARGS(SHVolumeTexture, SHVolumeSampler), float3 positionWS, float3 normalWS, float4x4 WorldToTexture, float texelSizeX) { float3 texCoord = mul(WorldToTexture, float4(positionWS, 1.0)).xyz; // Each component is store in the same texture 3D. Each use one quater on the x axis // Here we get R component then increase by step size (0.25) to get other component. This assume 4 component // but last one is not used. // Clamp to edge of the "internal" texture, as R is from half texel to size of R texture minus half texel. // This avoid leaking texCoord.x = Clamp(texCoord.x * 0.25, 0.5 * texelSizeX, 0.25 - 0.5 * texelSizeX); float4 shAr = SAMPLE_TEXTURE3D(SHVolumeTexture, SHVolumeSampler, texCoord); texCoord.x += 0.25; float4 shAg = SAMPLE_TEXTURE3D(SHVolumeTexture, SHVolumeSampler, texCoord); texCoord.x += 0.25; float4 shAb = SAMPLE_TEXTURE3D(SHVolumeTexture, SHVolumeSampler, texCoord); return SHEvalLinearL0L1(normalWS, shAr, shAg, shAb); } // Following functions are to sample enlighten lightmaps (or lightmaps encoded the same way as our // enlighten implementation). They assume use of RGB9E5 for illuminance map. // It is required for other platform that aren't supporting this format to implement variant of these functions // (But these kind of platform should use regular render loop and not news shaders). float3 SampleSingleLightmap(TEXTURE2D_ARGS(lightmapTex, lightmapSampler), float2 uv, float4 transform) { // transform is scale and bias uv = uv * transform.xy + transform.zw; // Remark: Lightmap is RGB9E5 return SAMPLE_TEXTURE2D(lightmapTex, lightmapSampler, uv).rgb; } float3 SampleDirectionalLightmap(TEXTURE2D_ARGS(lightmapTex, lightmapSampler), TEXTURE2D_ARGS(lightmapDirTex, lightmapDirSampler), float2 uv, float4 transform, float3 normalWS) { // In directional mode Enlighten bakes dominant light direction // in a way, that using it for half Lambert and then dividing by a "rebalancing coefficient" // gives a result close to plain diffuse response lightmaps, but normalmapped. // Note that dir is not unit length on purpose. Its length is "directionality", like // for the directional specular lightmaps. // transform is scale and bias uv = uv * transform.xy + transform.zw; float4 direction = SAMPLE_TEXTURE2D(lightmapDirTex, lightmapDirSampler, uv); // Remark: Lightmap is RGB9E5 float3 illuminance = SAMPLE_TEXTURE2D(lightmapTex, lightmapSampler, uv).rgb; float halfLambert = dot(normalWS, direction.xyz - 0.5) + 0.5; return illuminance * halfLambert / max(1e-4, direction.w); } #endif // UNITY_ENTITY_LIGHTING_INCLUDED