#ifndef UNITY_AREA_LIGHTING_INCLUDED #define UNITY_AREA_LIGHTING_INCLUDED float IntegrateEdge(float3 v1, float3 v2) { float cosTheta = dot(v1, v2); // Clamp to avoid artifacts. This particular constant gives the best results. cosTheta = Clamp(cosTheta, -0.9999, 0.9999); float theta = FastACos(cosTheta); float res = cross(v1, v2).z * theta / sin(theta); return res; } // Baum's equation // Expects non-normalized vertex positions float PolygonRadiance(float4x3 L, bool twoSided) { // 1. ClipQuadToHorizon // detect clipping config uint config = 0; if (L[0].z > 0) config += 1; if (L[1].z > 0) config += 2; if (L[2].z > 0) config += 4; if (L[3].z > 0) config += 8; // The fifth vertex for cases when clipping cuts off one corner. // Due to a compiler bug, copying L into a vector array with 5 rows // messes something up, so we need to stick with the matrix + the L4 vertex. float3 L4 = L[3]; // This switch is surprisingly fast. Tried replacing it with a lookup array of vertices. // Even though that replaced the switch with just some indexing and no branches, it became // way, way slower - mem fetch stalls? // clip uint n = 0; switch (config) { case 0: // clip all break; case 1: // V1 clip V2 V3 V4 n = 3; L[1] = -L[1].z * L[0] + L[0].z * L[1]; L[2] = -L[3].z * L[0] + L[0].z * L[3]; break; case 2: // V2 clip V1 V3 V4 n = 3; L[0] = -L[0].z * L[1] + L[1].z * L[0]; L[2] = -L[2].z * L[1] + L[1].z * L[2]; break; case 3: // V1 V2 clip V3 V4 n = 4; L[2] = -L[2].z * L[1] + L[1].z * L[2]; L[3] = -L[3].z * L[0] + L[0].z * L[3]; break; case 4: // V3 clip V1 V2 V4 n = 3; L[0] = -L[3].z * L[2] + L[2].z * L[3]; L[1] = -L[1].z * L[2] + L[2].z * L[1]; break; case 5: // V1 V3 clip V2 V4: impossible break; case 6: // V2 V3 clip V1 V4 n = 4; L[0] = -L[0].z * L[1] + L[1].z * L[0]; L[3] = -L[3].z * L[2] + L[2].z * L[3]; break; case 7: // V1 V2 V3 clip V4 n = 5; L4 = -L[3].z * L[0] + L[0].z * L[3]; L[3] = -L[3].z * L[2] + L[2].z * L[3]; break; case 8: // V4 clip V1 V2 V3 n = 3; L[0] = -L[0].z * L[3] + L[3].z * L[0]; L[1] = -L[2].z * L[3] + L[3].z * L[2]; L[2] = L[3]; break; case 9: // V1 V4 clip V2 V3 n = 4; L[1] = -L[1].z * L[0] + L[0].z * L[1]; L[2] = -L[2].z * L[3] + L[3].z * L[2]; break; case 10: // V2 V4 clip V1 V3: impossible break; case 11: // V1 V2 V4 clip V3 n = 5; L[3] = -L[2].z * L[3] + L[3].z * L[2]; L[2] = -L[2].z * L[1] + L[1].z * L[2]; break; case 12: // V3 V4 clip V1 V2 n = 4; L[1] = -L[1].z * L[2] + L[2].z * L[1]; L[0] = -L[0].z * L[3] + L[3].z * L[0]; break; case 13: // V1 V3 V4 clip V2 n = 5; L[3] = L[2]; L[2] = -L[1].z * L[2] + L[2].z * L[1]; L[1] = -L[1].z * L[0] + L[0].z * L[1]; break; case 14: // V2 V3 V4 clip V1 n = 5; L4 = -L[0].z * L[3] + L[3].z * L[0]; L[0] = -L[0].z * L[1] + L[1].z * L[0]; break; case 15: // V1 V2 V3 V4 n = 4; break; } if (n == 0) return 0; // 2. Project onto sphere L[0] = normalize(L[0]); L[1] = normalize(L[1]); L[2] = normalize(L[2]); switch (n) { case 3: L[3] = L[0]; break; case 4: L[3] = normalize(L[3]); L4 = L[0]; break; case 5: L[3] = normalize(L[3]); L4 = normalize(L4); break; } // 3. Integrate float sum = 0; sum += IntegrateEdge(L[0], L[1]); sum += IntegrateEdge(L[1], L[2]); sum += IntegrateEdge(L[2], L[3]); if (n >= 4) sum += IntegrateEdge(L[3], L4); if (n == 5) sum += IntegrateEdge(L4, L[0]); sum *= INV_TWO_PI; // Normalization return twoSided ? abs(sum) : max(sum, 0.0); } float LTCEvaluate(float3 V, float3 N, float3x3 minV, float4x3 L, bool twoSided) { // Construct local orthonormal basis around N, aligned with N float3x3 basis; basis[0] = normalize(V - N * dot(V, N)); basis[1] = normalize(cross(N, basis[0])); basis[2] = N; // rotate area light in local basis minV = mul(transpose(basis), minV); L = mul(L, minV); // Polygon radiance in transformed configuration - specular return PolygonRadiance(L, twoSided); } #endif // UNITY_AREA_LIGHTING_INCLUDED