#include "CoreRP/ShaderLibrary/Packing.hlsl" #include "../DiffusionProfile/DiffusionProfileSettings.cs.hlsl" #include "../DiffusionProfile/DiffusionProfile.hlsl" // constant buffer declaration CBUFFER_START(UnitySSSAndTransmissionParameters) // Warning: Unity is not able to losslessly transfer integers larger than 2^24 to the shader system. // Therefore, we bitcast uint to float in C#, and bitcast back to uint in the shader. uint _EnableSubsurfaceScattering; // Globally toggles subsurface and transmission scattering on/off float _TexturingModeFlags; // 1 bit/profile; 0 = PreAndPostScatter, 1 = PostScatter float _TransmissionFlags; // 1 bit/profile; 0 = regular, 1 = thin // Old SSS Model >>> float4 _HalfRcpVariancesAndWeights[DIFFUSION_PROFILE_COUNT][2]; // 2x Gaussians in RGB, A is interpolation weights // <<< Old SSS Model // Use float4 to avoid any packing issue between compute and pixel shaders float4 _ThicknessRemaps[DIFFUSION_PROFILE_COUNT]; // R: start, G = end - start, BA unused float4 _ShapeParams[DIFFUSION_PROFILE_COUNT]; // RGB = S = 1 / D, A = filter radius float4 _TransmissionTintsAndFresnel0[DIFFUSION_PROFILE_COUNT]; // RGB = 1/4 * color, A = fresnel0 float4 _WorldScales[DIFFUSION_PROFILE_COUNT]; // X = meters per world unit; Y = world units per meter CBUFFER_END // ---------------------------------------------------------------------------- // helper functions // ---------------------------------------------------------------------------- // 0: [ albedo = albedo ] // 1: [ albedo = 1 ] // 2: [ albedo = sqrt(albedo) ] uint GetSubsurfaceScatteringTexturingMode(int diffusionProfile) { uint texturingMode = 0; #if defined(SHADERPASS) && (SHADERPASS == SHADERPASS_SUBSURFACE_SCATTERING) // If the SSS pass is executed, we know we have SSS enabled. bool enableSss = true; #else bool enableSss = _EnableSubsurfaceScattering != 0; #endif if (enableSss) { bool performPostScatterTexturing = IsBitSet(asuint(_TexturingModeFlags), diffusionProfile); if (performPostScatterTexturing) { // Post-scatter texturing mode: the albedo is only applied during the SSS pass. #if defined(SHADERPASS) && (SHADERPASS != SHADERPASS_SUBSURFACE_SCATTERING) texturingMode = 1; #endif } else { // Pre- and post- scatter texturing mode. texturingMode = 2; } } return texturingMode; } // Returns the modified albedo (diffuse color) for materials with subsurface scattering. // See GetSubsurfaceScatteringTexturingMode() above for more details. // Ref: Advanced Techniques for Realistic Real-Time Skin Rendering. float3 ApplySubsurfaceScatteringTexturingMode(uint texturingMode, float3 color) { switch (texturingMode) { case 2: color = sqrt(color); break; case 1: color = 1; break; default: color = color; break; } return color; } // ---------------------------------------------------------------------------- // Encoding/decoding SSS buffer functions // ---------------------------------------------------------------------------- struct SSSData { float3 diffuseColor; float subsurfaceMask; uint diffusionProfile; }; #define SSSBufferType0 float4 // Must match GBufferType0 in deferred // SSSBuffer texture declaration TEXTURE2D(_SSSBufferTexture0); // Note: The SSS buffer used here is sRGB void EncodeIntoSSSBuffer(SSSData sssData, uint2 positionSS, out SSSBufferType0 outSSSBuffer0) { outSSSBuffer0 = float4(sssData.diffuseColor, PackFloatInt8bit(sssData.subsurfaceMask, sssData.diffusionProfile, 16)); } // Note: The SSS buffer used here is sRGB void DecodeFromSSSBuffer(float4 sssBuffer, uint2 positionSS, out SSSData sssData) { sssData.diffuseColor = sssBuffer.rgb; UnpackFloatInt8bit(sssBuffer.a, 16, sssData.subsurfaceMask, sssData.diffusionProfile); } void DecodeFromSSSBuffer(uint2 positionSS, out SSSData sssData) { float4 sssBuffer = LOAD_TEXTURE2D(_SSSBufferTexture0, positionSS); DecodeFromSSSBuffer(sssBuffer, positionSS, sssData); } // OUTPUT_SSSBUFFER start from SV_Target2 as SV_Target0 and SV_Target1 are used for lighting buffer #define OUTPUT_SSSBUFFER(NAME) out SSSBufferType0 MERGE_NAME(NAME, 0) : SV_Target2 #define ENCODE_INTO_SSSBUFFER(SURFACE_DATA, UNPOSITIONSS, NAME) EncodeIntoSSSBuffer(ConvertSurfaceDataToSSSData(SURFACE_DATA), UNPOSITIONSS, MERGE_NAME(NAME, 0)) #define DECODE_FROM_SSSBUFFER(UNPOSITIONSS, SSS_DATA) DecodeFromSSSBuffer(UNPOSITIONSS, SSS_DATA) // In order to support subsurface scattering, we need to know which pixels have an SSS material. // It can be accomplished by reading the stencil buffer. // A faster solution (which avoids an extra texture fetch) is to simply make sure that // all pixels which belong to an SSS material are not black (those that don't always are). // We choose the blue color channel since it's perceptually the least noticeable. float3 TagLightingForSSS(float3 subsurfaceLighting) { subsurfaceLighting.b = max(subsurfaceLighting.b, HALF_MIN); return subsurfaceLighting; } // See TagLightingForSSS() for details. bool TestLightingForSSS(float3 subsurfaceLighting) { return subsurfaceLighting.b > 0; } // ---------------------------------------------------------------------------- // Helper functions to use SSS/Transmission with a material // ---------------------------------------------------------------------------- // Following function allow to easily setup SSS and transmission inside a material. // User can request either SSS functions, or Transmission functions, or both, by defining MATERIAL_INCLUDE_SUBSURFACESCATTERING and/or MATERIAL_INCLUDE_TRANSMISSION // before including this file. // + It require that the material follow naming convention for properties inside BSDFData // struct BSDFData // { // (...) // // Share for SSS and Transmission // uint materialFeatures; // uint diffusionProfile; // // For SSS // float3 diffuseColor; // float3 fresnel0; // float subsurfaceMask; // // For transmission // float thickness; // bool useThickObjectMode; // float3 transmittance; // perceptualRoughness; // Only if user chose to support DisneyDiffuse // (...) // } // Note: Transmission functions for light evaluation are included in LightEvaluation.hlsl file also based on the MATERIAL_INCLUDE_TRANSMISSION // For LightEvaluation.hlsl file it is required to define a BRDF for the transmission. Defining USE_DIFFUSE_LAMBERT_BRDF use Lambert, otherwise it use Disneydiffuse #define MATERIAL_FEATURE_SSS_TRANSMISSION_START (1 << 16) // It should be safe to start these flags #define MATERIAL_FEATURE_FLAGS_SSS_OUTPUT_SPLIT_LIGHTING ((MATERIAL_FEATURE_SSS_TRANSMISSION_START) << 0) #define MATERIAL_FEATURE_FLAGS_SSS_TEXTURING_MODE_OFFSET FastLog2((MATERIAL_FEATURE_SSS_TRANSMISSION_START) << 1) // Note: The texture mode is 2bit, thus go from '<< 1' to '<< 3' #define MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_MIXED_THICKNESS ((MATERIAL_FEATURE_SSS_TRANSMISSION_START) << 3) // Flags used as a shortcut to know if we have thin mode transmission #define MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_THIN_THICKNESS ((MATERIAL_FEATURE_SSS_TRANSMISSION_START) << 4) #ifdef MATERIAL_INCLUDE_SUBSURFACESCATTERING void FillMaterialSSS(uint diffusionProfile, float subsurfaceMask, inout BSDFData bsdfData) { bsdfData.diffusionProfile = diffusionProfile; bsdfData.fresnel0 = _TransmissionTintsAndFresnel0[diffusionProfile].a; bsdfData.subsurfaceMask = subsurfaceMask; bsdfData.materialFeatures |= MATERIAL_FEATURE_FLAGS_SSS_OUTPUT_SPLIT_LIGHTING; bsdfData.materialFeatures |= GetSubsurfaceScatteringTexturingMode(diffusionProfile) << MATERIAL_FEATURE_FLAGS_SSS_TEXTURING_MODE_OFFSET; } bool ShouldOutputSplitLighting(BSDFData bsdfData) { return HasFlag(bsdfData.materialFeatures, MATERIAL_FEATURE_FLAGS_SSS_OUTPUT_SPLIT_LIGHTING); } float3 GetModifiedDiffuseColorForSSS(BSDFData bsdfData) { // Subsurface scattering mode uint texturingMode = (bsdfData.materialFeatures >> MATERIAL_FEATURE_FLAGS_SSS_TEXTURING_MODE_OFFSET) & 3; return ApplySubsurfaceScatteringTexturingMode(texturingMode, bsdfData.diffuseColor); } #endif #ifdef MATERIAL_INCLUDE_TRANSMISSION // Assume that bsdfData.diffusionProfile is init void FillMaterialTransmission(uint diffusionProfile, float thickness, inout BSDFData bsdfData) { bsdfData.diffusionProfile = diffusionProfile; bsdfData.fresnel0 = _TransmissionTintsAndFresnel0[diffusionProfile].a; bsdfData.thickness = _ThicknessRemaps[diffusionProfile].x + _ThicknessRemaps[diffusionProfile].y * thickness; // The difference between the thin and the regular (a.k.a. auto-thickness) modes is the following: // * in the thin object mode, we assume that the geometry is thin enough for us to safely share // the shadowing information between the front and the back faces; // * the thin mode uses baked (textured) thickness for all transmission calculations; // * the thin mode uses wrapped diffuse lighting for the NdotL; // * the auto-thickness mode uses the baked (textured) thickness to compute transmission from // indirect lighting and non-shadow-casting lights; for shadowed lights, it calculates // the thickness using the distance to the closest occluder sampled from the shadow map. // If the distance is large, it may indicate that the closest occluder is not the back face of // the current object. That's not a problem, since large thickness will result in low intensity. bool useThinObjectMode = IsBitSet(asuint(_TransmissionFlags), diffusionProfile); bsdfData.materialFeatures |= useThinObjectMode ? MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_THIN_THICKNESS : MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_MIXED_THICKNESS; // Compute transmittance using baked thickness here. It may be overridden for direct lighting // in the auto-thickness mode (but is always used for indirect lighting). #if SHADEROPTIONS_USE_DISNEY_SSS bsdfData.transmittance = ComputeTransmittanceDisney(_ShapeParams[diffusionProfile].rgb, _TransmissionTintsAndFresnel0[diffusionProfile].rgb, bsdfData.thickness); #else bsdfData.transmittance = ComputeTransmittanceJimenez( _HalfRcpVariancesAndWeights[diffusionProfile][0].rgb, _HalfRcpVariancesAndWeights[diffusionProfile][0].a, _HalfRcpVariancesAndWeights[diffusionProfile][1].rgb, _HalfRcpVariancesAndWeights[diffusionProfile][1].a, _TransmissionTintsAndFresnel0[diffusionProfile].rgb, bsdfData.thickness); #endif } #endif