#ifndef UNITY_COMMON_MATERIAL_INCLUDED #define UNITY_COMMON_MATERIAL_INCLUDED //----------------------------------------------------------------------------- // Helper functions for roughness //----------------------------------------------------------------------------- real PerceptualRoughnessToRoughness(real perceptualRoughness) { return perceptualRoughness * perceptualRoughness; } real RoughnessToPerceptualRoughness(real roughness) { return sqrt(roughness); } real PerceptualSmoothnessToRoughness(real perceptualSmoothness) { return (1.0 - perceptualSmoothness) * (1.0 - perceptualSmoothness); } real PerceptualSmoothnessToPerceptualRoughness(real perceptualSmoothness) { return (1.0 - perceptualSmoothness); } // Using roughness values of 0 leads to INFs and NANs. The only sensible place to use the roughness // value of 0 is IBL, so we do not modify the perceptual roughness which is used to select the MIP map level. // Note: making the constant too small results in aliasing. real ClampRoughnessForAnalyticalLights(real roughness) { return max(roughness, 1.0 / 1024.0); } void ConvertAnisotropyToRoughness(real perceptualRoughness, real anisotropy, out real roughnessT, out real roughnessB) { real roughness = PerceptualRoughnessToRoughness(perceptualRoughness); // Use the parametrization of Sony Imageworks. // Ref: Revisiting Physically Based Shading at Imageworks, p. 15. roughnessT = roughness * (1 + anisotropy); roughnessB = roughness * (1 - anisotropy); } real RoughnessToAnisotropy(real roughnessT, real roughnessB) { return ((roughnessT - roughnessB) / (roughnessT + roughnessB + 0.0001)); } // Same as ConvertAnisotropyToRoughness but // roughnessT and roughnessB are clamped, and are meant to be used with punctual and directional lights. void ConvertAnisotropyToClampRoughness(real perceptualRoughness, real anisotropy, out real roughnessT, out real roughnessB) { ConvertAnisotropyToRoughness(perceptualRoughness, anisotropy, roughnessT, roughnessB); roughnessT = ClampRoughnessForAnalyticalLights(roughnessT); roughnessB = ClampRoughnessForAnalyticalLights(roughnessB); } // Same as ConvertAnisotropyToClampRoughness, but without anisotropy. void ConvertPerceptualRoughnessToClampRoughness(real perceptualRoughness, out real roughness) { roughness = PerceptualRoughnessToRoughness(perceptualRoughness); roughness = ClampRoughnessForAnalyticalLights(roughness); } // Use with stack BRDF (clear coat / coat) real RoughnessToVariance(real roughness) { return 2.0 / Sq(roughness) - 2.0; } real VarianceToRoughness(real variance) { return sqrt(2.0 / (variance + 2.0)); } // same as regular refract except there is not the test for total internal reflection + the vector is flipped for processing real3 CoatRefract(real3 X, real3 N, real ieta) { real XdotN = saturate(dot(N, X)); return ieta * X + (sqrt(1 + ieta * ieta * (XdotN * XdotN - 1)) - ieta * XdotN) * N; } // ---------------------------------------------------------------------------- // Parallax mapping // ---------------------------------------------------------------------------- // ref https://www.gamedev.net/topic/678043-how-to-blend-world-space-normals/#entry5287707 // assume compositing in world space // Note: Using vtxNormal = real3(0, 0, 1) give the BlendNormalRNM formulation. // TODO: Untested real3 BlendNormalWorldspaceRNM(real3 n1, real3 n2, real3 vtxNormal) { // Build the shortest-arc quaternion real4 q = real4(cross(vtxNormal, n2), dot(vtxNormal, n2) + 1.0) / sqrt(2.0 * (dot(vtxNormal, n2) + 1)); // Rotate the normal return n1 * (q.w * q.w - dot(q.xyz, q.xyz)) + 2 * q.xyz * dot(q.xyz, n1) + 2 * q.w * cross(q.xyz, n1); } // ref http://blog.selfshadow.com/publications/blending-in-detail/ // ref https://gist.github.com/selfshadow/8048308 // Reoriented Normal Mapping // Blending when n1 and n2 are already 'unpacked' and normalised // assume compositing in tangent space real3 BlendNormalRNM(real3 n1, real3 n2) { real3 t = n1.xyz + real3(0.0, 0.0, 1.0); real3 u = n2.xyz * real3(-1.0, -1.0, 1.0); real3 r = (t / t.z) * dot(t, u) - u; return r; } // assume compositing in tangent space real3 BlendNormal(real3 n1, real3 n2) { return normalize(real3(n1.xy * n2.z + n2.xy * n1.z, n1.z * n2.z)); } // Ref: http://http.developer.nvidia.com/GPUGems3/gpugems3_ch01.html / http://www.slideshare.net/icastano/cascades-demo-secrets real3 ComputeTriplanarWeights(real3 normal) { // Determine the blend weights for the 3 planar projections. real3 blendWeights = abs(normal); // Tighten up the blending zone blendWeights = (blendWeights - 0.2); blendWeights = blendWeights * blendWeights * blendWeights; // pow(blendWeights, 3); // Force weights to sum to 1.0 (very important!) blendWeights = max(blendWeights, real3(0.0, 0.0, 0.0)); blendWeights /= dot(blendWeights, 1.0); return blendWeights; } // Planar/Triplanar convention for Unity in world space void GetTriplanarCoordinate(float3 position, out float2 uvXZ, out float2 uvXY, out float2 uvZY) { // Caution: This must follow the same rule as what is use for SurfaceGradient triplanar // TODO: Currently the normal mapping looks wrong without SURFACE_GRADIENT option because we don't handle corretly the tangent space uvXZ = float2(position.z, position.x); uvXY = float2(position.x, position.y); uvZY = float2(position.z, position.y); } real LerpWhiteTo(real b, real t) { real oneMinusT = 1.0 - t; return oneMinusT + b * t; } real3 LerpWhiteTo(real3 b, real t) { real oneMinusT = 1.0 - t; return real3(oneMinusT, oneMinusT, oneMinusT) + b * t; } #endif // UNITY_COMMON_MATERIAL_INCLUDED