#ifndef UNITY_PACKING_INCLUDED #define UNITY_PACKING_INCLUDED #include "Common.hlsl" //----------------------------------------------------------------------------- // Normal packing //----------------------------------------------------------------------------- float3 PackNormalCartesian(float3 n) { return n * 0.5 + 0.5; } float3 UnpackNormalCartesian(float3 n) { return normalize(n * 2.0 - 1.0); } float3 PackNormalMaxComponent(float3 n) { // TODO: use max3 return (n / max(abs(n.x), max(abs(n.y), abs(n.z)))) * 0.5 + 0.5; } float3 UnpackNormalMaxComponent(float3 n) { return normalize(n * 2.0 - 1.0); } // Ref: http://jcgt.org/published/0003/02/01/paper.pdf // Encode with Oct, this function work with any size of output // return float between [-1, 1] float2 PackNormalOctEncode(float3 n) { float l1norm = abs(n.x) + abs(n.y) + abs(n.z); float2 res0 = n.xy * (1.0 / l1norm); float2 val = 1.0 - abs(res0.yx); return (n.zz < float2(0.0, 0.0) ? (res0 >= 0.0 ? val : -val) : res0); } float3 UnpackNormalOctEncode(float2 f) { float3 n = float3(f.x, f.y, 1.0 - abs(f.x) - abs(f.y)); float2 val = 1.0 - abs(n.yx); n.xy = (n.zz < float2(0.0, 0.0) ? (n.xy >= 0.0 ? val : -val) : n.xy); return normalize(n); } float3 UnpackNormalDXT5nm (float4 packednormal) { float3 normal; normal.xy = packednormal.wy * 2.0 - 1.0; normal.z = sqrt(1 - saturate(dot(normal.xy, normal.xy))); return normal; } //----------------------------------------------------------------------------- // Byte packing //----------------------------------------------------------------------------- float Pack2Byte(float2 inputs) { float2 temp = inputs * float2(255.0, 255.0); temp.x *= 256.0; temp = round(temp); float combined = temp.x + temp.y; return combined * (1.0 / 65535.0); } float2 Unpack2Byte(float inputs) { float temp = round(inputs * 65535.0); float ipart; float fpart = modf(temp / 256.0, ipart); float2 result = float2(ipart, round(256.0 * fpart)); return result * (1.0 / float2(255.0, 255.0)); } // Encode a float in [0..1] and an int in [0..maxi - 1] as a float [0..1] to be store in log2(precision) bit // maxi must be a power of two and define the number of bit dedicated 0..1 to the int part (log2(maxi)) // Example: precision is 256.0, maxi is 2, i is [0..1] encode on 1 bit. f is [0..1] encode on 7 bit. // Example: precision is 256.0, maxi is 4, i is [0..3] encode on 2 bit. f is [0..1] encode on 6 bit. // Example: precision is 256.0, maxi is 8, i is [0..7] encode on 3 bit. f is [0..1] encode on 5 bit. // ... // Example: precision is 1024.0, maxi is 8, i is [0..7] encode on 3 bit. f is [0..1] encode on 7 bit. //... float PackFloatInt(float f, int i, float maxi, float precision) { // Constant float precisionMinusOne = precision - 1.0; float t1 = ((precision / maxi) - 1.0) / precisionMinusOne; float t2 = (precision / maxi) / precisionMinusOne; return t1 * f + t2 * float(i); } void UnpackFloatInt(float val, float maxi, float precision, out float f, out int i) { // Constant float precisionMinusOne = precision - 1.0; float t1 = ((precision / maxi) - 1.0) / precisionMinusOne; float t2 = (precision / maxi) / precisionMinusOne; // extract integer part i = int(val / t2); // Now that we have i, solve formula in PackFloatInt for f //f = (val - t2 * float(i)) / t1 => convert in mads form f = (-t2 * float(i) + val) / t1; } // Define various variante for ease of read float PackFloatInt8bit(float f, int i, float maxi) { return PackFloatInt(f, i, maxi, 255.0); } float UnpackFloatInt8bit(float val, float maxi, out float f, out int i) { UnpackFloatInt(val, maxi, 255.0, f, i); } float PackFloatInt10bit(float f, int i, float maxi) { return PackFloatInt(f, i, maxi, 1024.0); } float UnpackFloatInt10bit(float val, float maxi, out float f, out int i) { UnpackFloatInt(val, maxi, 1024.0, f, i); } float PackFloatInt16bit(float f, int i, float maxi) { return PackFloatInt(f, i, maxi, 65536.0); } float UnpackFloatInt16bit(float val, float maxi, out float f, out int i) { UnpackFloatInt(val, maxi, 65536.0, f, i); } #endif // UNITY_PACKING_INCLUDED