//----------------------------------------------------------------------------- // SurfaceData and BSDFData //----------------------------------------------------------------------------- // SurfaceData is define in Lit.cs which generate Lit.cs.hlsl #include "Lit.cs.hlsl" #include "SubsurfaceScatteringSettings.cs.hlsl" // Enables attenuation of light source contributions by participating media (fog). #define VOLUMETRIC_SHADOWING_ENABLED #ifdef VOLUMETRIC_SHADOWING_ENABLED // Apparently, not all shaders include "ShaderVariables.hlsl". #include "../../ShaderVariables.hlsl" #include "../../../Core/ShaderLibrary/VolumeRendering.hlsl" #endif // In case we pack data uint16 buffer we need to change the output render target format to uint16 // TODO: Is there a way to automate these output type based on the format declare in lit.cs ? #if SHADEROPTIONS_PACK_GBUFFER_IN_U16 #define GBufferType0 uint4 #define GBufferType1 uint4 // TODO: How to abstract that ? We would like to avoid this PS4 test here #ifdef SHADER_API_PS4 // On PS4 we need to specify manually the format of the output render target, output type is not enough #pragma PSSL_target_output_format(target 0 FMT_UINT16_ABGR) #pragma PSSL_target_output_format(target 1 FMT_UINT16_ABGR) #endif #else #define GBufferType0 float4 #define GBufferType1 float4 #define GBufferType2 float4 #define GBufferType3 float4 #endif // Reference Lambert diffuse / GGX Specular for IBL and area lights #ifdef HAS_LIGHTLOOP // Both reference define below need to be define only if LightLoop is present, else we get a compile error //#define LIT_DISPLAY_REFERENCE_AREA //#define LIT_DISPLAY_REFERENCE_IBL #endif // Use Lambert diffuse instead of Disney diffuse // #define LIT_DIFFUSE_LAMBERT_BRDF // Use optimization of Precomputing LambdaV // TODO: Test if this is a win // #define LIT_USE_BSDF_PRE_LAMBDAV // Sampler use by area light, gaussian pyramid, ambient occlusion etc... SamplerState s_linear_clamp_sampler; SamplerState s_trilinear_clamp_sampler; // Rough refraction texture // Color pyramid (width, height, lodcount, Unused) float4 _GaussianPyramidColorMipSize; TEXTURE2D(_GaussianPyramidColorTexture); // Depth pyramid (width, height, lodcount, Unused) float4 _PyramidDepthMipSize; TEXTURE2D(_PyramidDepthTexture); // Ambient occlusion texture TEXTURE2D(_AmbientOcclusionTexture); float4 _AmbientOcclusionParam; // xyz occlusion color, w directLightStrenght // Area light textures // TODO: This one should be set into a constant Buffer at pass frequency (with _Screensize) TEXTURE2D(_PreIntegratedFGD); TEXTURE2D_ARRAY(_LtcData); // We pack the 3 Ltc data inside a texture array #define LTC_GGX_MATRIX_INDEX 0 // RGBA #define LTC_DISNEY_DIFFUSE_MATRIX_INDEX 1 // RGBA #define LTC_MULTI_GGX_FRESNEL_DISNEY_DIFFUSE_INDEX 2 // RGB, A unused #define LTC_LUT_SIZE 64 #define LTC_LUT_SCALE ((LTC_LUT_SIZE - 1) * rcp(LTC_LUT_SIZE)) #define LTC_LUT_OFFSET (0.5 * rcp(LTC_LUT_SIZE)) // Subsurface scattering constant #define SSS_WRAP_ANGLE (PI/12) // Used for wrap lighting #define SSS_WRAP_LIGHT cos(PI/2 - SSS_WRAP_ANGLE) CBUFFER_START(UnitySSSParameters) uint _EnableSSSAndTransmission; // Globally toggles subsurface and transmission scattering on/off uint _TexturingModeFlags; // 1 bit/profile; 0 = PreAndPostScatter, 1 = PostScatter uint _TransmissionFlags; // 2 bit/profile; 0 = inf. thick, 1 = thin, 2 = regular // Old SSS Model >>> uint _UseDisneySSS; float4 _HalfRcpVariancesAndWeights[SSS_N_PROFILES][2]; // 2x Gaussians in RGB, A is interpolation weights // <<< Old SSS Model // Use float4 to avoid any packing issue between compute and pixel shaders float4 _ThicknessRemaps[SSS_N_PROFILES]; // R: start, G = end - start, BA unused float4 _ShapeParams[SSS_N_PROFILES]; // RGB = S = 1 / D, A = filter radius float4 _TransmissionTints[SSS_N_PROFILES]; // RGB = 1/4 * color, A = unused CBUFFER_END // General constant #define MIN_N_DOT_V 0.0001 // The minimum value of 'NdotV' //----------------------------------------------------------------------------- // Ligth and material classification for the deferred rendering path // Configure what kind of combination is supported //----------------------------------------------------------------------------- // Lighting architecture and material are suppose to be decoupled files. // However as we use material classification it is hard to be fully separated // the dependecy is define in this include where there is shared define for material and lighting in case of deferred material. // If a user do a lighting architecture without material classification, this can be remove #include "../../Lighting/TilePass/TilePass.cs.hlsl" static int g_FeatureFlags = 0xFFFFFFFF; // This method allows us to know at compile time what shader features should be removed from the code when the materialID cannot be known on the whole tile (any combination of 2 or more differnet materials in the same tile) // This is only useful for classification during lighting, so it's not needed in EncodeIntoGBuffer and ConvertSurfaceDataToBSDFData (where we always know exactly what the MaterialID is) bool HasMaterialFeatureFlag(int flag) { return ((g_FeatureFlags & flag) != 0); } // Combination need to be define in increasing "comlexity" order as define by FeatureFlagsToTileVariant static const uint kFeatureVariantFlags[NUM_FEATURE_VARIANTS] = { // Precomputed illumination (no dynamic lights) for all material types (except for the clear coat) /* 0 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_ENV | (MATERIAL_FEATURE_MASK_FLAGS & (~MATERIALFEATUREFLAGS_LIT_CLEAR_COAT)), // Standard>Specular /* 1 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_PUNCTUAL | MATERIALFEATUREFLAGS_LIT_STANDARD, /* 2 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_AREA | MATERIALFEATUREFLAGS_LIT_STANDARD, /* 3 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_ENV | MATERIALFEATUREFLAGS_LIT_STANDARD, /* 4 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_PUNCTUAL | LIGHTFEATUREFLAGS_ENV | MATERIALFEATUREFLAGS_LIT_STANDARD, /* 5 */ LIGHT_FEATURE_MASK_FLAGS | MATERIALFEATUREFLAGS_LIT_STANDARD, // SSS /* 6 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_PUNCTUAL | MATERIALFEATUREFLAGS_LIT_SSS, /* 7 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_AREA | MATERIALFEATUREFLAGS_LIT_SSS, /* 8 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_ENV | MATERIALFEATUREFLAGS_LIT_SSS, /* 9 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_PUNCTUAL | LIGHTFEATUREFLAGS_ENV | MATERIALFEATUREFLAGS_LIT_SSS, /* 10 */ LIGHT_FEATURE_MASK_FLAGS | MATERIALFEATUREFLAGS_LIT_SSS, // Aniso /* 11 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_PUNCTUAL | MATERIALFEATUREFLAGS_LIT_ANISO, /* 12 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_AREA | MATERIALFEATUREFLAGS_LIT_ANISO, /* 13 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_ENV | MATERIALFEATUREFLAGS_LIT_ANISO, /* 14 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_PUNCTUAL | LIGHTFEATUREFLAGS_ENV | MATERIALFEATUREFLAGS_LIT_ANISO, /* 15 */ LIGHT_FEATURE_MASK_FLAGS | MATERIALFEATUREFLAGS_LIT_ANISO, // With foliage or crowd with SSS and standard can overlap a lot, better to have a dedicated combination /* 16 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_PUNCTUAL | MATERIALFEATUREFLAGS_LIT_SSS | MATERIALFEATUREFLAGS_LIT_STANDARD, /* 17 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_AREA | MATERIALFEATUREFLAGS_LIT_SSS | MATERIALFEATUREFLAGS_LIT_STANDARD, /* 18 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_ENV | MATERIALFEATUREFLAGS_LIT_SSS | MATERIALFEATUREFLAGS_LIT_STANDARD, /* 19 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_PUNCTUAL | LIGHTFEATUREFLAGS_ENV | MATERIALFEATUREFLAGS_LIT_SSS | MATERIALFEATUREFLAGS_LIT_STANDARD, /* 20 */ LIGHT_FEATURE_MASK_FLAGS | MATERIALFEATUREFLAGS_LIT_SSS | MATERIALFEATUREFLAGS_LIT_STANDARD, // ClearCoat /* 21 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_PUNCTUAL | MATERIALFEATUREFLAGS_LIT_CLEAR_COAT, /* 22 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_AREA | MATERIALFEATUREFLAGS_LIT_CLEAR_COAT, /* 23 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_ENV | MATERIALFEATUREFLAGS_LIT_CLEAR_COAT, /* 24 */ LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_DIRECTIONAL | LIGHTFEATUREFLAGS_PUNCTUAL | LIGHTFEATUREFLAGS_ENV | MATERIALFEATUREFLAGS_LIT_CLEAR_COAT, /* 25 */ LIGHT_FEATURE_MASK_FLAGS | MATERIALFEATUREFLAGS_LIT_CLEAR_COAT, /* 26 */ LIGHT_FEATURE_MASK_FLAGS | MATERIAL_FEATURE_MASK_FLAGS, // Catch all case with MATERIAL_FEATURE_MASK_FLAGS is needed in case we disable material classification }; uint FeatureFlagsToTileVariant(uint featureFlags) { for (int i = 0; i < NUM_FEATURE_VARIANTS; i++) { if ((featureFlags & kFeatureVariantFlags[i]) == featureFlags) return i; } return NUM_FEATURE_VARIANTS - 1; } // This function need to return a compile time value, else there is no optimization uint TileVariantToFeatureFlags(uint variant) { return kFeatureVariantFlags[variant]; } //----------------------------------------------------------------------------- // Helper functions/variable specific to this material //----------------------------------------------------------------------------- float PackMaterialId(int materialId) { return float(materialId) / 3.0; } int UnpackMaterialId(float f) { return int(round(f * 3.0)); } void FillMaterialIdStandardData(float3 baseColor, float metallic, inout BSDFData bsdfData) { bsdfData.diffuseColor = baseColor * (1.0 - metallic); float val = DEFAULT_SPECULAR_VALUE; bsdfData.fresnel0 = lerp(val.xxx, baseColor, metallic); } void FillMaterialIdAnisoData(float roughness, float3 normalWS, float3 tangentWS, float anisotropy, inout BSDFData bsdfData) { bsdfData.tangentWS = tangentWS; bsdfData.bitangentWS = cross(normalWS, tangentWS); ConvertAnisotropyToRoughness(roughness, anisotropy, bsdfData.roughnessT, bsdfData.roughnessB); bsdfData.anisotropy = anisotropy; } void FillMaterialIdSSSData(float3 baseColor, int subsurfaceProfile, float subsurfaceRadius, float thickness, inout BSDFData bsdfData) { bsdfData.diffuseColor = baseColor; bsdfData.fresnel0 = SKIN_SPECULAR_VALUE; // TODO take from subsurfaceProfile instead bsdfData.subsurfaceProfile = subsurfaceProfile; bsdfData.subsurfaceRadius = subsurfaceRadius; bsdfData.thickness = _ThicknessRemaps[subsurfaceProfile].x + _ThicknessRemaps[subsurfaceProfile].y * thickness; uint transmissionMode = BitFieldExtract(_TransmissionFlags, 2u, 2u * subsurfaceProfile); bsdfData.enableTransmission = transmissionMode != SSS_TRSM_MODE_NONE && (_EnableSSSAndTransmission > 0); bsdfData.useThinObjectMode = transmissionMode == SSS_TRSM_MODE_THIN; bool performPostScatterTexturing = IsBitSet(_TexturingModeFlags, subsurfaceProfile); #if defined(SHADERPASS) && (SHADERPASS == SHADERPASS_LIGHT_TRANSPORT) // In case of GI pass don't modify the diffuseColor bool enableSssAndTransmission = false; #elif defined(SHADERPASS) && (SHADERPASS == SHADERPASS_SUBSURFACE_SCATTERING) bool enableSssAndTransmission = true; #else bool enableSssAndTransmission = _EnableSSSAndTransmission != 0; #endif if (enableSssAndTransmission) // If we globally disable SSS effect, don't modify diffuseColor { // We modify the albedo here as this code is used by all lighting (including light maps and GI). if (performPostScatterTexturing) { #if !defined(SHADERPASS) || (SHADERPASS != SHADERPASS_SUBSURFACE_SCATTERING) bsdfData.diffuseColor = float3(1.0, 1.0, 1.0); #endif } else { bsdfData.diffuseColor = sqrt(bsdfData.diffuseColor); } } if (bsdfData.enableTransmission) { if (_UseDisneySSS) { bsdfData.transmittance = ComputeTransmittance(_ShapeParams[subsurfaceProfile].rgb, _TransmissionTints[subsurfaceProfile].rgb, bsdfData.thickness, bsdfData.subsurfaceRadius); } else { bsdfData.transmittance = ComputeTransmittanceJimenez(_HalfRcpVariancesAndWeights[subsurfaceProfile][0].rgb, _HalfRcpVariancesAndWeights[subsurfaceProfile][0].a, _HalfRcpVariancesAndWeights[subsurfaceProfile][1].rgb, _HalfRcpVariancesAndWeights[subsurfaceProfile][1].a, _TransmissionTints[subsurfaceProfile].rgb, bsdfData.thickness, bsdfData.subsurfaceRadius); } bsdfData.transmittance *= bsdfData.diffuseColor; // Premultiply } } void FillMaterialIdClearCoatData(float3 coatNormalWS, float coatCoverage, float coatIOR, inout BSDFData bsdfData) { bsdfData.coatNormalWS = lerp(bsdfData.normalWS, coatNormalWS, coatCoverage); bsdfData.coatIOR = lerp(1.0, 1.0 + coatIOR, coatCoverage); bsdfData.coatCoverage = coatCoverage; } void FillMaterialIdTransparencyData(float ior, float3 transmittanceColor, float atDistance, float thickness, inout BSDFData bsdfData) { // Uses thickness from SSS's property set bsdfData.ior = ior; // Absorption coefficient from Disney: http://blog.selfshadow.com/publications/s2015-shading-course/burley/s2015_pbs_disney_bsdf_notes.pdf bsdfData.absorptionCoefficient = -log(transmittanceColor + 0.00001) / max(atDistance, 0.000001); #if defined(_REFRACTION_THINPLANE) bsdfData.thickness = 0.03; #else bsdfData.thickness = max(0.000001, thickness); #endif } // For image based lighting, a part of the BSDF is pre-integrated. // This is done both for specular and diffuse (in case of DisneyDiffuse) void GetPreIntegratedFGD(float NdotV, float perceptualRoughness, float3 fresnel0, out float3 specularFGD, out float diffuseFGD) { // Pre-integrate GGX FGD // _PreIntegratedFGD.x = Gv * (1 - Fc) with Fc = (1 - H.L)^5 // _PreIntegratedFGD.y = Gv * Fc // Pre integrate DisneyDiffuse FGD: // _PreIntegratedFGD.z = DisneyDiffuse float3 preFGD = SAMPLE_TEXTURE2D_LOD(_PreIntegratedFGD, s_linear_clamp_sampler, float2(NdotV, perceptualRoughness), 0).xyz; // f0 * Gv * (1 - Fc) + Gv * Fc specularFGD = fresnel0 * preFGD.x + preFGD.y; #ifdef LIT_DIFFUSE_LAMBERT_BRDF diffuseFGD = 1.0; #else diffuseFGD = preFGD.z; #endif } void ApplyDebugToSurfaceData(inout SurfaceData surfaceData) { #ifdef DEBUG_DISPLAY if (_DebugLightingMode == DEBUGLIGHTINGMODE_SPECULAR_LIGHTING) { bool overrideSmoothness = _DebugLightingSmoothness.x != 0.0; float overrideSmoothnessValue = _DebugLightingSmoothness.y; if (overrideSmoothness) { surfaceData.perceptualSmoothness = overrideSmoothnessValue; } } if (_DebugLightingMode == DEBUGLIGHTINGMODE_DIFFUSE_LIGHTING) { surfaceData.baseColor = _DebugLightingAlbedo.xyz; } #endif } //----------------------------------------------------------------------------- // conversion function for forward //----------------------------------------------------------------------------- BSDFData ConvertSurfaceDataToBSDFData(SurfaceData surfaceData) { ApplyDebugToSurfaceData(surfaceData); BSDFData bsdfData; ZERO_INITIALIZE(BSDFData, bsdfData); bsdfData.specularOcclusion = surfaceData.specularOcclusion; bsdfData.normalWS = surfaceData.normalWS; bsdfData.perceptualRoughness = PerceptualSmoothnessToPerceptualRoughness(surfaceData.perceptualSmoothness); bsdfData.roughness = PerceptualRoughnessToRoughness(bsdfData.perceptualRoughness); bsdfData.materialId = surfaceData.materialId; // IMPORTANT: In case of foward or gbuffer pass we must know what we are statically, so compiler can do compile time optimization if (bsdfData.materialId == MATERIALID_LIT_STANDARD) { FillMaterialIdStandardData(surfaceData.baseColor, surfaceData.metallic, bsdfData); } else if (bsdfData.materialId == MATERIALID_LIT_SPECULAR) { // Note: Specular is not a material id but just a way to parameterize the standard materialid, thus we reset materialId to MATERIALID_LIT_STANDARD bsdfData.materialId = MATERIALID_LIT_STANDARD; bsdfData.diffuseColor = surfaceData.baseColor; bsdfData.fresnel0 = surfaceData.specularColor; } else if (bsdfData.materialId == MATERIALID_LIT_SSS) { FillMaterialIdSSSData(surfaceData.baseColor, surfaceData.subsurfaceProfile, surfaceData.subsurfaceRadius, surfaceData.thickness, bsdfData); } else if (bsdfData.materialId == MATERIALID_LIT_ANISO) { FillMaterialIdStandardData(surfaceData.baseColor, surfaceData.metallic, bsdfData); FillMaterialIdAnisoData(bsdfData.roughness, surfaceData.normalWS, surfaceData.tangentWS, surfaceData.anisotropy, bsdfData); } else if (bsdfData.materialId == MATERIALID_LIT_CLEAR_COAT) { // When using clear coat we assume that bottom layer is regular FillMaterialIdStandardData(surfaceData.baseColor, surfaceData.metallic, bsdfData); FillMaterialIdClearCoatData(surfaceData.coatNormalWS, surfaceData.coatCoverage, surfaceData.coatIOR, bsdfData); } #if defined(_REFRACTION_THINPLANE) || defined(_REFRACTION_THICKPLANE) || defined(_REFRACTION_THICKSPHERE) // Note: Will override thickness of SSS's property set FillMaterialIdTransparencyData(surfaceData.ior, surfaceData.transmittanceColor, surfaceData.atDistance, surfaceData.thickness, bsdfData); #endif return bsdfData; } //----------------------------------------------------------------------------- // conversion function for deferred //----------------------------------------------------------------------------- // Encode SurfaceData (BSDF parameters) into GBuffer // Must be in sync with RT declared in HDRenderPipeline.cs ::Rebuild void EncodeIntoGBuffer( SurfaceData surfaceData, float3 bakeDiffuseLighting, #if SHADEROPTIONS_PACK_GBUFFER_IN_U16 out GBufferType0 outGBufferU0, out GBufferType1 outGBufferU1 #else out GBufferType0 outGBuffer0, out GBufferType1 outGBuffer1, out GBufferType2 outGBuffer2, out GBufferType3 outGBuffer3 #endif ) { #if SHADEROPTIONS_PACK_GBUFFER_IN_U16 float4 outGBuffer0, outGBuffer1, outGBuffer2, outGBuffer3; #endif ApplyDebugToSurfaceData(surfaceData); // RT0 - 8:8:8:8 sRGB outGBuffer0 = float4(surfaceData.baseColor, surfaceData.specularOcclusion); // RT1 - 10:10:10:2 // We store perceptualRoughness instead of roughness because it save a sqrt ALU when decoding // (as we want both perceptualRoughness and roughness for the lighting due to Disney Diffuse model) // Encode normal on 20bit with oct compression + 2bit of sign float2 octNormalWS = PackNormalOctEncode((surfaceData.materialId == MATERIALID_LIT_CLEAR_COAT) ? surfaceData.coatNormalWS : surfaceData.normalWS); // To have more precision encode the sign of xy in a separate uint uint octNormalSign = (octNormalWS.x < 0.0 ? 1 : 0) | (octNormalWS.y < 0.0 ? 2 : 0); // Store octNormalSign on two bits with perceptualRoughness outGBuffer1 = float4(abs(octNormalWS), PackFloatInt10bit(PerceptualSmoothnessToPerceptualRoughness(surfaceData.perceptualSmoothness), octNormalSign, 4.0), PackMaterialId(surfaceData.materialId)); // RT2 - 8:8:8:8 if (surfaceData.materialId == MATERIALID_LIT_STANDARD) { outGBuffer2 = float4(float3(0.0, 0.0, 0.0), PackFloatInt8bit(surfaceData.metallic, GBUFFER_LIT_STANDARD_REGULAR_ID, 4.0)); } else if (surfaceData.materialId == MATERIALID_LIT_SPECULAR) { outGBuffer1.a = PackMaterialId(MATERIALID_LIT_STANDARD); // Encode MATERIALID_LIT_SPECULAR as MATERIALID_LIT_STANDARD + GBUFFER_LIT_STANDARD_SPECULAR_COLOR_ID value in GBuffer2 outGBuffer2 = float4(surfaceData.specularColor, PackFloatInt8bit(0.0, GBUFFER_LIT_STANDARD_SPECULAR_COLOR_ID, 4.0)); } else if (surfaceData.materialId == MATERIALID_LIT_SSS) { outGBuffer2 = float4(surfaceData.subsurfaceRadius, surfaceData.thickness, 0.0, PackByte(surfaceData.subsurfaceProfile)); } else if (surfaceData.materialId == MATERIALID_LIT_ANISO) { // Encode tangent on 16bit with oct compression float2 octTangentWS = PackNormalOctEncode(surfaceData.tangentWS); // To have more precision encode the sign of xy in a separate uint uint octTangentSign = (octTangentWS.x < 0.0 ? 1 : 0) | (octTangentWS.y < 0.0 ? 2 : 0); outGBuffer2 = float4(abs(octTangentWS), surfaceData.anisotropy * 0.5 + 0.5, PackFloatInt8bit(surfaceData.metallic, octTangentSign, 4.0)); } else if (surfaceData.materialId == MATERIALID_LIT_CLEAR_COAT) { // In the cae of clear coat, we want more precision for the coat normal than for the bottom normal (as it is expected to be smooth). So swap the normal encoding storage in Gbuffer. // It also allow to use clear coat normal for SSR float2 octBottomNormalWS = PackNormalOctEncode(surfaceData.normalWS); outGBuffer2 = float4(octBottomNormalWS * 0.5 + 0.5, surfaceData.coatCoverage, PackFloatInt8bit(surfaceData.coatIOR, (int)(surfaceData.metallic * 15.5f), 16.0) ); } // Lighting outGBuffer3 = float4(bakeDiffuseLighting, 0.0); #if SHADEROPTIONS_PACK_GBUFFER_IN_U16 // Now pack all buffer into 2 uint buffer // We don't have hardware sRGB to store base color in case we pack int u16, so rather than perform full sRGB encoding just use cheap gamma20 // TODO: test alternative like FastLinearToSRGB to better match unpacked gbuffer outGBuffer0.xyz = LinearToGamma20(outGBuffer0.xyz); uint packedGBuffer1 = PackR10G10B10A2(outGBuffer1); outGBufferU0 = uint4( PackFloatToUInt(outGBuffer0.x, 8, 0) | PackFloatToUInt(outGBuffer0.y, 8, 8), PackFloatToUInt(outGBuffer0.z, 8, 0) | PackFloatToUInt(outGBuffer0.w, 8, 8), (packedGBuffer1 & 0x0000FFFF), (packedGBuffer1 & 0xFFFF0000) >> 16); uint packedGBuffer3 = PackToR11G11B10f(outGBuffer3.xyz); outGBufferU1 = uint4( PackFloatToUInt(outGBuffer2.x, 8, 0) | PackFloatToUInt(outGBuffer2.y, 8, 8), PackFloatToUInt(outGBuffer2.z, 8, 0) | PackFloatToUInt(outGBuffer2.w, 8, 8), (packedGBuffer3 & 0x0000FFFF), (packedGBuffer3 & 0xFFFF0000) >> 16); #endif } float4 DecodeGBuffer0(GBufferType0 encodedGBuffer0) { float4 decodedGBuffer0; #if SHADEROPTIONS_PACK_GBUFFER_IN_U16 decodedGBuffer0.x = UnpackUIntToFloat(encodedGBuffer0.x, 8, 0); decodedGBuffer0.y = UnpackUIntToFloat(encodedGBuffer0.x, 8, 8); decodedGBuffer0.z = UnpackUIntToFloat(encodedGBuffer0.y, 8, 0); decodedGBuffer0.w = UnpackUIntToFloat(encodedGBuffer0.y, 8, 8); decodedGBuffer0.xyz = Gamma20ToLinear(encodedGBuffer0.xyz); #else decodedGBuffer0 = encodedGBuffer0; #endif return decodedGBuffer0; } void DecodeFromGBuffer( #if SHADEROPTIONS_PACK_GBUFFER_IN_U16 GBufferType0 inGBufferU0, GBufferType1 inGBufferU1, #else GBufferType0 inGBuffer0, GBufferType1 inGBuffer1, GBufferType2 inGBuffer2, GBufferType3 inGBuffer3, #endif uint featureFlags, out BSDFData bsdfData, out float3 bakeDiffuseLighting) { ZERO_INITIALIZE(BSDFData, bsdfData); g_FeatureFlags = featureFlags; #if SHADEROPTIONS_PACK_GBUFFER_IN_U16 float4 inGBuffer0, inGBuffer1, inGBuffer2, inGBuffer3; inGBuffer0 = DecodeGBuffer0(inGBufferU0); uint packedGBuffer1 = inGBufferU0.z | inGBufferU0.w << 16; inGBuffer1 = UnpackR10G10B10A2(packedGBuffer1); inGBuffer2.x = UnpackUIntToFloat(inGBufferU1.x, 8, 0); inGBuffer2.y = UnpackUIntToFloat(inGBufferU1.x, 8, 8); inGBuffer2.z = UnpackUIntToFloat(inGBufferU1.y, 8, 0); inGBuffer2.w = UnpackUIntToFloat(inGBufferU1.y, 8, 8); uint packedGBuffer3 = inGBufferU1.z | inGBufferU1.w << 16; inGBuffer3.xyz = UnpackFromR11G11B10f(packedGBuffer1); inGBuffer3.w = 0.0; #endif float3 baseColor = inGBuffer0.rgb; bsdfData.specularOcclusion = inGBuffer0.a; int octNormalSign; UnpackFloatInt10bit(inGBuffer1.b, 4.0, bsdfData.perceptualRoughness, octNormalSign); inGBuffer1.r = (octNormalSign & 1) ? -inGBuffer1.r : inGBuffer1.r; inGBuffer1.g = (octNormalSign & 2) ? -inGBuffer1.g : inGBuffer1.g; bsdfData.normalWS = UnpackNormalOctEncode(float2(inGBuffer1.r, inGBuffer1.g)); bsdfData.roughness = PerceptualRoughnessToRoughness(bsdfData.perceptualRoughness); // The material features system for material classification must allow compile time optimization (i.e everything should be static) // Note that as we store materialId for Aniso based on content of RT2 we need to add few extra condition. // The code is also call from MaterialFeatureFlagsFromGBuffer, so must work fully dynamic if featureFlags is 0xFFFFFFFF int supportsStandard = HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_STANDARD); int supportsSSS = HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_SSS); int supportsAniso = HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_ANISO); int supportClearCoat = HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_CLEAR_COAT); if (supportsStandard + supportsSSS + supportsAniso + supportClearCoat > 1) { // only fetch materialid if it is not statically known from feature flags bsdfData.materialId = UnpackMaterialId(inGBuffer1.a); } else { // materialid is statically known. this allows the compiler to eliminate a lot of code. if (supportsStandard) bsdfData.materialId = MATERIALID_LIT_STANDARD; else if (supportsSSS) bsdfData.materialId = MATERIALID_LIT_SSS; else if (supportsAniso) bsdfData.materialId = MATERIALID_LIT_ANISO; else bsdfData.materialId = MATERIALID_LIT_CLEAR_COAT; } if (bsdfData.materialId == MATERIALID_LIT_STANDARD && HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_STANDARD)) { float metallic; int materialIdExtent; UnpackFloatInt8bit(inGBuffer2.a, 4.0, metallic, materialIdExtent); if (materialIdExtent == GBUFFER_LIT_STANDARD_SPECULAR_COLOR_ID) { // Note: Specular is not a material id but just a way to parameterize the standard materialid, thus we reset materialId to MATERIALID_LIT_STANDARD // For material classification it will be consider as Standard as well, thus no need to create special case bsdfData.diffuseColor = baseColor; bsdfData.fresnel0 = inGBuffer2.rgb; } else // GBUFFER_LIT_STANDARD_REGULAR_ID { FillMaterialIdStandardData(baseColor, metallic, bsdfData); } } else if (bsdfData.materialId == MATERIALID_LIT_SSS && HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_SSS)) { float subsurfaceRadius = inGBuffer2.x; float thickness = inGBuffer2.y; int subsurfaceProfile = UnpackByte(inGBuffer2.w); FillMaterialIdSSSData(baseColor, subsurfaceProfile, subsurfaceRadius, thickness, bsdfData); } else if (bsdfData.materialId == MATERIALID_LIT_ANISO && HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_ANISO)) { float metallic; int octTangentSign; UnpackFloatInt8bit(inGBuffer2.a, 4.0, metallic, octTangentSign); FillMaterialIdStandardData(baseColor, metallic, bsdfData); inGBuffer2.r = (octTangentSign & 1) ? -inGBuffer2.r : inGBuffer2.r; inGBuffer2.g = (octTangentSign & 2) ? -inGBuffer2.g : inGBuffer2.g; float3 tangentWS = UnpackNormalOctEncode(inGBuffer2.rg); float anisotropy = inGBuffer2.b * 2 - 1; FillMaterialIdAnisoData(bsdfData.roughness, bsdfData.normalWS, tangentWS, anisotropy, bsdfData); } else if (bsdfData.materialId == MATERIALID_LIT_CLEAR_COAT && HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_CLEAR_COAT)) { // We have swap the encoding of the normal to have more precision for coat normal as it is more smooth float3 coatNormalWS = bsdfData.normalWS; bsdfData.normalWS = UnpackNormalOctEncode(float2(inGBuffer2.rg * 2.0 - 1.0)); float coatCoverage = inGBuffer2.b; float coatIOR; int metallic; UnpackFloatInt8bit(inGBuffer2.a, 16.0, coatIOR, metallic); // When using clear coat we assume that bottom layer is regular FillMaterialIdStandardData(baseColor, metallic / 15.0f, bsdfData); FillMaterialIdClearCoatData(coatNormalWS, coatCoverage, coatIOR, bsdfData); } bakeDiffuseLighting = inGBuffer3.rgb; } // Function call from the material classification compute shader // Note that as we store materialId on two buffer (for anisotropy case), the code need to load 2 RGBA8 buffer uint MaterialFeatureFlagsFromGBuffer( #if SHADEROPTIONS_PACK_GBUFFER_IN_U16 GBufferType0 inGBufferU0, GBufferType1 inGBufferU1 #else GBufferType0 inGBuffer0, GBufferType1 inGBuffer1, GBufferType2 inGBuffer2, GBufferType3 inGBuffer3 #endif ) { BSDFData bsdfData; float3 unused; DecodeFromGBuffer( #if SHADEROPTIONS_PACK_GBUFFER_IN_U16 inGBufferU0, inGBufferU1, #else inGBuffer0, inGBuffer1, inGBuffer2, inGBuffer3, #endif 0xFFFFFFFF, bsdfData, unused ); return (1 << bsdfData.materialId); // This match all the MATERIALFEATUREFLAGS_LIT_XXX flag } //----------------------------------------------------------------------------- // Debug method (use to display values) //----------------------------------------------------------------------------- void GetSurfaceDataDebug(uint paramId, SurfaceData surfaceData, inout float3 result, inout bool needLinearToSRGB) { GetGeneratedSurfaceDataDebug(paramId, surfaceData, result, needLinearToSRGB); } void GetBSDFDataDebug(uint paramId, BSDFData bsdfData, inout float3 result, inout bool needLinearToSRGB) { GetGeneratedBSDFDataDebug(paramId, bsdfData, result, needLinearToSRGB); } //----------------------------------------------------------------------------- // PreLightData //----------------------------------------------------------------------------- // Precomputed lighting data to send to the various lighting functions struct PreLightData { // General float NdotV; // Geometric version (could be negative) // GGX iso float ggxPreLambdaV; // GGX Aniso float TdotV; float BdotV; float anisoGGXPreLambdaV; // Clear coat float coatNdotV; float ieta; float coatFresnel0; float3 coatV; float3 refractV; // The view vector refracted through clear coat interface // IBL float3 iblDirWS; // Dominant specular direction, used for IBL in EvaluateBSDF_Env() float iblMipLevel; // IBL clear coat float3 coatIblDirWS; float3 specularFGD; // Store preconvoled BRDF for both specular and diffuse float diffuseFGD; // Area lights (17 VGPRs) float3x3 orthoBasisViewNormal; // Right-handed view-dependent orthogonal basis around the normal (6x VGPRs) float3x3 ltcTransformDiffuse; // Inverse transformation for Lambertian or Disney Diffuse (4x VGPRs) float3x3 ltcTransformSpecular; // Inverse transformation for GGX (4x VGPRs) float ltcMagnitudeDiffuse; float3 ltcMagnitudeFresnel; // area light clear coat float3x3 ltcXformClearCoat; // TODO: make sure the compiler not wasting VGPRs on constants float ltcClearCoatFresnelTerm; float3x3 ltcCoatT; #ifdef VOLUMETRIC_SHADOWING_ENABLED float globalFogExtinction; #endif }; // This is a refract - TODO: do we call original refract or this one, original maybe slightly emore expensive, to check float3 ClearCoatTransform(float3 X, float3 N, float ieta) { float XdotN = saturate(dot(N, X)); return ieta * X + (sqrt(1 + ieta * ieta * (XdotN * XdotN - 1)) - ieta * XdotN) * N; } PreLightData GetPreLightData(float3 V, PositionInputs posInput, BSDFData bsdfData) { PreLightData preLightData; if (bsdfData.materialId == MATERIALID_LIT_CLEAR_COAT && HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_CLEAR_COAT)) { float ieta = 1.0 / bsdfData.coatIOR; // inverse eta preLightData.ieta = ieta; preLightData.coatFresnel0 = Sqr(bsdfData.coatIOR - 1.0) / Sqr(bsdfData.coatIOR + 1.0); preLightData.coatNdotV = dot(bsdfData.coatNormalWS, V); // Clear coat IBL // In the case of IBL we want shift a bit the normal that are not toward the viewver to reduce artifact float3 coatIblNormalWS = GetViewShiftedNormal(bsdfData.coatNormalWS, V, preLightData.coatNdotV, MIN_N_DOT_V); // Use non-clamped NdotV preLightData.coatIblDirWS = reflect(-V, coatIblNormalWS); float coatNdotV = max(preLightData.coatNdotV, MIN_N_DOT_V); // Use the modified (clamped) version // Clear coat area light float theta = FastACosPos(coatNdotV); float2 uv = LTC_LUT_OFFSET + LTC_LUT_SCALE * float2(0.0, theta * INV_HALF_PI); // Use Roughness of 0.0 for clearCoat roughness // Get the inverse LTC matrix for GGX // Note we load the matrix transpose (avoid to have to transpose it in shader) preLightData.ltcXformClearCoat = 0.0; preLightData.ltcXformClearCoat._m22 = 1.0; preLightData.ltcXformClearCoat._m00_m02_m11_m20 = SAMPLE_TEXTURE2D_ARRAY_LOD(_LtcData, s_linear_clamp_sampler, uv, LTC_GGX_MATRIX_INDEX, 0); float3 ltcMagnitude = SAMPLE_TEXTURE2D_ARRAY_LOD(_LtcData, s_linear_clamp_sampler, uv, LTC_MULTI_GGX_FRESNEL_DISNEY_DIFFUSE_INDEX, 0).rgb; float ltcClearCoatFresnelMagnitudeDiff = ltcMagnitude.r; // The difference of magnitudes of GGX and Fresnel float ltcClearCoatFresnelMagnitude = ltcMagnitude.g; preLightData.ltcClearCoatFresnelTerm = preLightData.coatFresnel0 * ltcClearCoatFresnelMagnitudeDiff + ltcClearCoatFresnelMagnitude; // TODO: Convert the area light with respect to Fresnel transmission float3 N = bsdfData.coatNormalWS; // TODO : check with Laurentb preLightData.ltcCoatT = float3x3( ieta + (1.0 - ieta) * N.x * N.x, 0.0 + (1.0 - ieta) * N.y * N.x, 0.0 + (1.0 - ieta) * N.z * N.x, 0.0 + (1.0 - ieta) * N.x * N.y, ieta + (1.0 - ieta) * N.y * N.y, 0.0 + (1.0 - ieta) * N.z * N.y, 0.0 + (1.0 - ieta) * N.x * N.z, 0.0 + (1.0 - ieta) * N.y * N.z, ieta + (1.0 - ieta) * N.z * N.z ); // Modify V for following calculation preLightData.refractV = ClearCoatTransform(V, bsdfData.coatNormalWS, ieta); V = preLightData.refractV; } preLightData.NdotV = dot(bsdfData.normalWS, V); // Store the unaltered (geometric) version // In the case of IBL we want shift a bit the normal that are not toward the viewver to reduce artifact float3 iblNormalWS = GetViewShiftedNormal(bsdfData.normalWS, V, preLightData.NdotV, MIN_N_DOT_V); // Use non-clamped NdotV float3 iblR = reflect(-V, iblNormalWS); float NdotV = max(preLightData.NdotV, MIN_N_DOT_V); // Use the modified (clamped) version // GGX iso preLightData.ggxPreLambdaV = GetSmithJointGGXPreLambdaV(NdotV, bsdfData.roughness); // GGX aniso preLightData.TdotV = 0.0; preLightData.BdotV = 0.0; if (bsdfData.materialId == MATERIALID_LIT_ANISO && HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_ANISO)) { preLightData.TdotV = dot(bsdfData.tangentWS, V); preLightData.BdotV = dot(bsdfData.bitangentWS, V); preLightData.anisoGGXPreLambdaV = GetSmithJointGGXAnisoPreLambdaV(preLightData.TdotV, preLightData.BdotV, NdotV, bsdfData.roughnessT, bsdfData.roughnessB); // For positive anisotropy values: tangent = highlight stretch (anisotropy) direction, bitangent = grain (brush) direction. float3 grainDirWS = (bsdfData.anisotropy >= 0) ? bsdfData.bitangentWS : bsdfData.tangentWS; float3 anisoIblNormalWS = GetAnisotropicModifiedNormal(grainDirWS, iblNormalWS, V, abs(bsdfData.anisotropy)); // NOTE: If we follow the theory we should use the modified normal for the different calculation implying a normal (like NdotV) and use iblNormalWS // into function like GetSpecularDominantDir(). However modified normal is just a hack. The goal is just to stretch a cubemap, no accuracy here. // With this in mind and for performance reasons we chose to only use modified normal to calculate R. iblR = reflect(-V, anisoIblNormalWS); } // IBL GetPreIntegratedFGD(NdotV, bsdfData.perceptualRoughness, bsdfData.fresnel0, preLightData.specularFGD, preLightData.diffuseFGD); if (bsdfData.materialId == MATERIALID_LIT_CLEAR_COAT && HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_CLEAR_COAT)) { // Update the roughness and the IBL miplevel // Bottom layer is affected by upper layer BRDF, result can't be more sharp than input (it is to mimic what a path tracer will do) float roughness = PerceptualRoughnessToRoughness(bsdfData.perceptualRoughness); float shininess = Sqr(preLightData.ieta) * (2.0 / Sqr(roughness) - 2.0); roughness = sqrt(2.0 / (shininess + 2.0)); preLightData.iblDirWS = GetSpecularDominantDir(iblNormalWS, iblR, roughness, NdotV); preLightData.iblMipLevel = PerceptualRoughnessToMipmapLevel(RoughnessToPerceptualRoughness(roughness)); } else { preLightData.iblDirWS = GetSpecularDominantDir(iblNormalWS, iblR, bsdfData.roughness, NdotV); preLightData.iblMipLevel = PerceptualRoughnessToMipmapLevel(bsdfData.perceptualRoughness); } // Area light // UVs for sampling the LUTs float theta = FastACosPos(NdotV); // For Area light - UVs for sampling the LUTs float2 uv = LTC_LUT_OFFSET + LTC_LUT_SCALE * float2(bsdfData.perceptualRoughness, theta * INV_HALF_PI); // Note we load the matrix transpose (avoid to have to transpose it in shader) #ifdef LIT_DIFFUSE_LAMBERT_BRDF preLightData.ltcTransformDiffuse = k_identity3x3; #else // Get the inverse LTC matrix for Disney Diffuse preLightData.ltcTransformDiffuse = 0.0; preLightData.ltcTransformDiffuse._m22 = 1.0; preLightData.ltcTransformDiffuse._m00_m02_m11_m20 = SAMPLE_TEXTURE2D_ARRAY_LOD(_LtcData, s_linear_clamp_sampler, uv, LTC_DISNEY_DIFFUSE_MATRIX_INDEX, 0); #endif // Get the inverse LTC matrix for GGX // Note we load the matrix transpose (avoid to have to transpose it in shader) preLightData.ltcTransformSpecular = 0.0; preLightData.ltcTransformSpecular._m22 = 1.0; preLightData.ltcTransformSpecular._m00_m02_m11_m20 = SAMPLE_TEXTURE2D_ARRAY_LOD(_LtcData, s_linear_clamp_sampler, uv, LTC_GGX_MATRIX_INDEX, 0); // Construct a right-handed view-dependent orthogonal basis around the normal preLightData.orthoBasisViewNormal[0] = normalize(V - bsdfData.normalWS * preLightData.NdotV); preLightData.orthoBasisViewNormal[2] = bsdfData.normalWS; preLightData.orthoBasisViewNormal[1] = normalize(cross(preLightData.orthoBasisViewNormal[2], preLightData.orthoBasisViewNormal[0])); float3 ltcMagnitude = SAMPLE_TEXTURE2D_ARRAY_LOD(_LtcData, s_linear_clamp_sampler, uv, LTC_MULTI_GGX_FRESNEL_DISNEY_DIFFUSE_INDEX, 0).rgb; float ltcGGXFresnelMagnitudeDiff = ltcMagnitude.r; // The difference of magnitudes of GGX and Fresnel float ltcGGXFresnelMagnitude = ltcMagnitude.g; float ltcDisneyDiffuseMagnitude = ltcMagnitude.b; #ifdef LIT_DIFFUSE_LAMBERT_BRDF preLightData.ltcMagnitudeDiffuse = 1; #else preLightData.ltcMagnitudeDiffuse = ltcDisneyDiffuseMagnitude; #endif // TODO: the fit seems rather poor. The scaling factor of 0.5 allows us // to match the reference for rough metals, but further darkens dielectrics. if (bsdfData.materialId == MATERIALID_LIT_CLEAR_COAT && HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_CLEAR_COAT)) { // Change the Fresnel term to account for transmission through Clear Coat and reflection on the base layer float F = F_Schlick(preLightData.coatFresnel0, preLightData.coatNdotV); F = Sqr(-F * bsdfData.coatCoverage + 1.0); F /= preLightData.ieta; //TODO: LaurentB why / ieta here and not for other lights ? preLightData.ltcMagnitudeFresnel = F * bsdfData.fresnel0 * ltcGGXFresnelMagnitudeDiff + (float3)ltcGGXFresnelMagnitude; } else { preLightData.ltcMagnitudeFresnel = bsdfData.fresnel0 * ltcGGXFresnelMagnitudeDiff + (float3)ltcGGXFresnelMagnitude; } #ifdef VOLUMETRIC_SHADOWING_ENABLED preLightData.globalFogExtinction = _GlobalFog_Extinction; #endif return preLightData; } //----------------------------------------------------------------------------- // bake lighting function //----------------------------------------------------------------------------- // GetBakedDiffuseLigthing function compute the bake lighting + emissive color to be store in emissive buffer (Deferred case) // In forward it must be add to the final contribution. // This function require the 3 structure surfaceData, builtinData, bsdfData because it may require both the engine side data, and data that will not be store inside the gbuffer. float3 GetBakedDiffuseLigthing(SurfaceData surfaceData, BuiltinData builtinData, BSDFData bsdfData, PreLightData preLightData) { // Premultiply bake diffuse lighting information with DisneyDiffuse pre-integration return builtinData.bakeDiffuseLighting * preLightData.diffuseFGD * surfaceData.ambientOcclusion * bsdfData.diffuseColor + builtinData.emissiveColor; } //----------------------------------------------------------------------------- // light transport functions //----------------------------------------------------------------------------- LightTransportData GetLightTransportData(SurfaceData surfaceData, BuiltinData builtinData, BSDFData bsdfData) { LightTransportData lightTransportData; // diffuseColor for lightmapping should basically be diffuse color. // But rough metals (black diffuse) still scatter quite a lot of light around, so // we want to take some of that into account too. lightTransportData.diffuseColor = bsdfData.diffuseColor + bsdfData.fresnel0 * bsdfData.roughness * 0.5 * surfaceData.metallic; lightTransportData.emissiveColor = builtinData.emissiveColor; return lightTransportData; } //----------------------------------------------------------------------------- // LightLoop related function (Only include if required) // HAS_LIGHTLOOP is define in Lighting.hlsl //----------------------------------------------------------------------------- #ifdef HAS_LIGHTLOOP //----------------------------------------------------------------------------- // BSDF share between directional light, punctual light and area light (reference) //----------------------------------------------------------------------------- void BSDF( float3 V, float3 L, float3 positionWS, PreLightData preLightData, BSDFData bsdfData, out float3 diffuseLighting, out float3 specularLighting) { float3 F = 1.0; specularLighting = float3(0.0, 0.0, 0.0); if (bsdfData.materialId == MATERIALID_LIT_CLEAR_COAT && HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_CLEAR_COAT) ) { // Optimized math. Ref: PBR Diffuse Lighting for GGX + Smith Microsurfaces (slide 114). float NdotL = saturate(dot(bsdfData.coatNormalWS, L)); float NdotV = preLightData.coatNdotV; float LdotV = dot(L, V); float invLenLV = rsqrt(abs(2 * LdotV + 2)); float NdotH = saturate((NdotL + NdotV) * invLenLV); float LdotH = saturate(invLenLV * LdotV + invLenLV); // Evaluate Fresnel on the Clear Coat F = F_Schlick(preLightData.coatFresnel0, LdotH); // TODO: No need to call D (to see with LaurentB) + question on * NdotL specularLighting += F * D_GGX(NdotH, 0.01) * NdotL * bsdfData.coatCoverage; // Change the Fresnel term to account for transmission through Clear Coat and reflection on the base layer F = Sqr(-F * bsdfData.coatCoverage + 1.0); // Change the Light and View direction to account for IOR change. // Update the half vector accordingly V = preLightData.refractV; L = ClearCoatTransform(L, bsdfData.coatNormalWS, preLightData.ieta); } // Optimized math. Ref: PBR Diffuse Lighting for GGX + Smith Microsurfaces (slide 114). float NdotL = saturate(dot(bsdfData.normalWS, L)); // Must have the same value without the clamp float NdotV = preLightData.NdotV; // Get the unaltered (geometric) version float LdotV = dot(L, V); float invLenLV = rsqrt(abs(2 * LdotV + 2)); // invLenLV = rcp(length(L + V)) float NdotH = saturate((NdotL + NdotV) * invLenLV); float LdotH = saturate(invLenLV * LdotV + invLenLV); NdotV = max(NdotV, MIN_N_DOT_V); // Use the modified (clamped) version F *= F_Schlick(bsdfData.fresnel0, LdotH); float DV; if (bsdfData.materialId == MATERIALID_LIT_ANISO && HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_ANISO)) { float3 H = (L + V) * invLenLV; // For anisotropy we must not saturate these values float TdotH = dot(bsdfData.tangentWS, H); float TdotL = dot(bsdfData.tangentWS, L); float BdotH = dot(bsdfData.bitangentWS, H); float BdotL = dot(bsdfData.bitangentWS, L); bsdfData.roughnessT = ClampRoughnessForAnalyticalLights(bsdfData.roughnessT); bsdfData.roughnessB = ClampRoughnessForAnalyticalLights(bsdfData.roughnessB); // TODO: Do comparison between this correct version and the one from isotropic and see if there is any visual difference DV = DV_SmithJointGGXAniso(TdotH, BdotH, NdotH, preLightData.TdotV, preLightData.BdotV, preLightData.NdotV, TdotL, BdotL, NdotL, bsdfData.roughnessT, bsdfData.roughnessB #ifdef LIT_USE_BSDF_PRE_LAMBDAV , preLightData.preLambdaV); #else ); #endif } else { bsdfData.roughness = ClampRoughnessForAnalyticalLights(bsdfData.roughness); DV = DV_SmithJointGGX(NdotH, NdotL, NdotV, bsdfData.roughness #ifdef LIT_USE_BSDF_PRE_LAMBDAV , preLightData preLambdaV); #else ); #endif } specularLighting += F * DV; #ifdef LIT_DIFFUSE_LAMBERT_BRDF float diffuseTerm = Lambert(); #elif LIT_DIFFUSE_GGX_BRDF float3 diffuseTerm = DiffuseGGX(bsdfData.diffuseColor, NdotV, NdotL, NdotH, LdotV, bsdfData.roughness); #else float diffuseTerm = DisneyDiffuse(NdotV, NdotL, LdotV, bsdfData.perceptualRoughness); #endif diffuseLighting = bsdfData.diffuseColor * diffuseTerm; } // Currently, we only model diffuse transmission. Specular transmission is not yet supported. // We assume that the back side of the object is a uniformly illuminated infinite plane // with the reversed normal (and the view vector) of the current sample. float3 EvaluateTransmission(BSDFData bsdfData, float intensity, float shadow) { // For low thickness, we can reuse the shadowing status for the back of the object. shadow = bsdfData.useThinObjectMode ? shadow : 1; float backLight = intensity * shadow; return backLight * bsdfData.transmittance; // Premultiplied with the diffuse color } //----------------------------------------------------------------------------- // EvaluateBSDF_Directional (supports directional and box projector lights) //----------------------------------------------------------------------------- float4 EvaluateCookie_Directional(LightLoopContext lightLoopContext, DirectionalLightData lightData, float3 lighToSample) { // Compute the NDC position (in [-1, 1]^2) by projecting 'positionWS' onto the near plane. // 'lightData.right' and 'lightData.up' are pre-scaled on CPU. float3x3 lightToWorld = float3x3(lightData.right, lightData.up, lightData.forward); float3 positionLS = mul(lighToSample, transpose(lightToWorld)); float2 positionNDC = positionLS.xy; bool isInBounds; // Remap the texture coordinates from [-1, 1]^2 to [0, 1]^2. float2 coord = positionNDC * 0.5 + 0.5; if (lightData.tileCookie) { // Tile the texture if the 'repeat' wrap mode is enabled. coord = frac(coord); isInBounds = true; } else { isInBounds = Max3(abs(positionNDC.x), abs(positionNDC.y), 1 - positionLS.z) <= 1; } // We let the sampler handle tiling or clamping to border. // Note: tiling (the repeat mode) is not currently supported. float4 cookie = SampleCookie2D(lightLoopContext, coord, lightData.cookieIndex); cookie.a = isInBounds ? cookie.a : 0; return cookie; } void EvaluateBSDF_Directional(LightLoopContext lightLoopContext, float3 V, PositionInputs posInput, PreLightData preLightData, DirectionalLightData lightData, BSDFData bsdfData, out float3 diffuseLighting, out float3 specularLighting) { float3 positionWS = posInput.positionWS; float3 L = -lightData.forward; // Lights are pointing backward in Unity float NdotL = dot(bsdfData.normalWS, L); float illuminance = saturate(NdotL); diffuseLighting = float3(0, 0, 0); // TODO: check whether using 'out' instead of 'inout' increases the VGPR pressure specularLighting = float3(0, 0, 0); // TODO: check whether using 'out' instead of 'inout' increases the VGPR pressure float shadow = 1; [branch] if (lightData.shadowIndex >= 0) { #ifdef SURFACE_TYPE_TRANSPARENT shadow = GetDirectionalShadowAttenuation(lightLoopContext.shadowContext, positionWS, bsdfData.normalWS, lightData.shadowIndex, L, posInput.unPositionSS); #else shadow = LOAD_TEXTURE2D(_DeferredShadowTexture, posInput.unPositionSS).x; #endif illuminance *= shadow; } [branch] if (lightData.cookieIndex >= 0) { float3 lightToSurface = positionWS - lightData.positionWS; float4 cookie = EvaluateCookie_Directional(lightLoopContext, lightData, lightToSurface); // Premultiply. lightData.color *= cookie.rgb; lightData.diffuseScale *= cookie.a; lightData.specularScale *= cookie.a; } [branch] if (illuminance > 0.0) { BSDF(V, L, positionWS, preLightData, bsdfData, diffuseLighting, specularLighting); diffuseLighting *= illuminance * lightData.diffuseScale; specularLighting *= illuminance * lightData.specularScale; } [branch] if (bsdfData.enableTransmission) { // We apply wrapped lighting instead of the regular Lambertian diffuse // to compensate for approximations within EvaluateTransmission(). float illuminance = Lambert() * ComputeWrappedDiffuseLighting(-NdotL, SSS_WRAP_LIGHT); // We use diffuse lighting for accumulation since it is going to be blurred during the SSS pass. diffuseLighting += EvaluateTransmission(bsdfData, illuminance * lightData.diffuseScale, shadow); } // Save ALU by applying 'lightData.color' only once. diffuseLighting *= lightData.color; specularLighting *= lightData.color; } //----------------------------------------------------------------------------- // EvaluateBSDF_Punctual (supports spot, point and projector lights) //----------------------------------------------------------------------------- float4 EvaluateCookie_Punctual(LightLoopContext lightLoopContext, LightData lightData, float3 lighToSample) { int lightType = lightData.lightType; // Translate and rotate 'positionWS' into the light space. // 'lightData.right' and 'lightData.up' are pre-scaled on CPU. float3x3 lightToWorld = float3x3(lightData.right, lightData.up, lightData.forward); float3 positionLS = mul(lighToSample, transpose(lightToWorld)); float4 cookie; [branch] if (lightType == GPULIGHTTYPE_POINT) { cookie = SampleCookieCube(lightLoopContext, positionLS, lightData.cookieIndex); } else { // Compute the NDC position (in [-1, 1]^2) by projecting 'positionWS' onto the plane at 1m distance. // Box projector lights require no perspective division. float perspectiveZ = (lightType != GPULIGHTTYPE_PROJECTOR_BOX) ? positionLS.z : 1; float2 positionNDC = positionLS.xy / perspectiveZ; bool isInBounds = Max3(abs(positionNDC.x), abs(positionNDC.y), 1 - positionLS.z) <= 1; // Remap the texture coordinates from [-1, 1]^2 to [0, 1]^2. float2 coord = positionNDC * 0.5 + 0.5; // We let the sampler handle clamping to border. cookie = SampleCookie2D(lightLoopContext, coord, lightData.cookieIndex); cookie.a = isInBounds ? cookie.a : 0; } return cookie; } float GetPunctualShapeAttenuation(LightData lightData, float3 L, float distSq) { // Note: lightData.invSqrAttenuationRadius is 0 when applyRangeAttenuation is false float attenuation = GetDistanceAttenuation(distSq, lightData.invSqrAttenuationRadius); // Reminder: lights are oriented backward (-Z) return attenuation * GetAngleAttenuation(L, -lightData.forward, lightData.angleScale, lightData.angleOffset); } void EvaluateBSDF_Punctual( LightLoopContext lightLoopContext, float3 V, PositionInputs posInput, PreLightData preLightData, LightData lightData, BSDFData bsdfData, int GPULightType, out float3 diffuseLighting, out float3 specularLighting) { float3 positionWS = posInput.positionWS; int lightType = GPULightType; // All punctual light type in the same formula, attenuation is neutral depends on light type. // light.positionWS is the normalize light direction in case of directional light and invSqrAttenuationRadius is 0 // mean dot(unL, unL) = 1 and mean GetDistanceAttenuation() will return 1 // For point light and directional GetAngleAttenuation() return 1 float3 lightToSurface = positionWS - lightData.positionWS; float3 unL = -lightToSurface; float distSq = dot(unL, unL); float dist = sqrt(distSq); float3 L = (lightType != GPULIGHTTYPE_PROJECTOR_BOX) ? unL * rsqrt(distSq) : -lightData.forward; float NdotL = dot(bsdfData.normalWS, L); float illuminance = saturate(NdotL); float attenuation = GetPunctualShapeAttenuation(lightData, L, distSq); // Premultiply. lightData.diffuseScale *= attenuation; lightData.specularScale *= attenuation; diffuseLighting = float3(0, 0, 0); // TODO: check whether using 'out' instead of 'inout' increases the VGPR pressure specularLighting = float3(0, 0, 0); // TODO: check whether using 'out' instead of 'inout' increases the VGPR pressure float shadow = 1; [branch] if (lightData.shadowIndex >= 0) { // TODO: make projector lights cast shadows. float3 offset = float3(0.0, 0.0, 0.0); // GetShadowPosOffset(nDotL, normal); float4 L_dist = { L, dist }; shadow = GetPunctualShadowAttenuation(lightLoopContext.shadowContext, positionWS + offset, bsdfData.normalWS, lightData.shadowIndex, L_dist, posInput.unPositionSS); shadow = lerp(1.0, shadow, lightData.shadowDimmer); illuminance *= shadow; } #ifdef VOLUMETRIC_SHADOWING_ENABLED float volumetricShadow = Transmittance(OpticalDepthHomogeneous(preLightData.globalFogExtinction, dist)); // Premultiply. lightData.diffuseScale *= volumetricShadow; lightData.specularScale *= volumetricShadow; #endif // Projector lights always have a cookies, so we can perform clipping inside the if(). [branch] if (lightData.cookieIndex >= 0) { float4 cookie = EvaluateCookie_Punctual(lightLoopContext, lightData, lightToSurface); // Premultiply. lightData.color *= cookie.rgb; lightData.diffuseScale *= cookie.a; lightData.specularScale *= cookie.a; } [branch] if (illuminance > 0.0) { bsdfData.roughness = max(bsdfData.roughness, lightData.minRoughness); // Simulate that a punctual ligth have a radius with this hack BSDF(V, L, positionWS, preLightData, bsdfData, diffuseLighting, specularLighting); diffuseLighting *= illuminance * lightData.diffuseScale; specularLighting *= illuminance * lightData.specularScale; } [branch] if (bsdfData.enableTransmission) { // We apply wrapped lighting instead of the regular Lambertian diffuse // to compensate for approximations within EvaluateTransmission(). float illuminance = Lambert() * ComputeWrappedDiffuseLighting(-NdotL, SSS_WRAP_LIGHT); // We use diffuse lighting for accumulation since it is going to be blurred during the SSS pass. diffuseLighting += EvaluateTransmission(bsdfData, illuminance * lightData.diffuseScale, shadow); } // Save ALU by applying 'lightData.color' only once. diffuseLighting *= lightData.color; specularLighting *= lightData.color; } #include "LitReference.hlsl" //----------------------------------------------------------------------------- // EvaluateBSDF_Line - Approximation with Linearly Transformed Cosines //----------------------------------------------------------------------------- void EvaluateBSDF_Line(LightLoopContext lightLoopContext, float3 V, PositionInputs posInput, PreLightData preLightData, LightData lightData, BSDFData bsdfData, out float3 diffuseLighting, out float3 specularLighting) { float3 positionWS = posInput.positionWS; #ifdef LIT_DISPLAY_REFERENCE_AREA IntegrateBSDF_LineRef(V, positionWS, preLightData, lightData, bsdfData, diffuseLighting, specularLighting); #else diffuseLighting = float3(0.0, 0.0, 0.0); specularLighting = float3(0.0, 0.0, 0.0); float len = lightData.size.x; float3 T = lightData.right; float3 unL = lightData.positionWS - positionWS; // Pick the major axis of the ellipsoid. float3 axis = lightData.right; // We define the ellipsoid s.t. r1 = (r + len / 2), r2 = r3 = r. // TODO: This could be precomputed. float radius = rsqrt(lightData.invSqrAttenuationRadius); float invAspectRatio = radius / (radius + (0.5 * len)); // Compute the light attenuation. float intensity = GetEllipsoidalDistanceAttenuation(unL, lightData.invSqrAttenuationRadius, axis, invAspectRatio); // Terminate if the shaded point is too far away. if (intensity == 0.0) return; lightData.diffuseScale *= intensity; lightData.specularScale *= intensity; // Translate the light s.t. the shaded point is at the origin of the coordinate system. lightData.positionWS -= positionWS; // TODO: some of this could be precomputed. float3 P1 = lightData.positionWS - T * (0.5 * len); float3 P2 = lightData.positionWS + T * (0.5 * len); // Rotate the endpoints into the local coordinate system. P1 = mul(P1, transpose(preLightData.orthoBasisViewNormal)); P2 = mul(P2, transpose(preLightData.orthoBasisViewNormal)); // Compute the binormal in the local coordinate system. float3 B = normalize(cross(P1, P2)); float ltcValue; // Evaluate the diffuse part { ltcValue = LTCEvaluate(P1, P2, B, preLightData.ltcTransformDiffuse); ltcValue *= lightData.diffuseScale; diffuseLighting = bsdfData.diffuseColor * (preLightData.ltcMagnitudeDiffuse * ltcValue); } [branch] if (bsdfData.enableTransmission) { // Flip the view vector and the normal. The bitangent stays the same. float3x3 flipMatrix = float3x3(-1, 0, 0, 0, 1, 0, 0, 0, -1); // Use the Lambertian approximation for performance reasons. // The matrix multiplication should not generate any extra ALU on GCN. ltcValue = LTCEvaluate(P1, P2, B, mul(flipMatrix, k_identity3x3)); ltcValue *= lightData.diffuseScale; // We use diffuse lighting for accumulation since it is going to be blurred during the SSS pass. diffuseLighting += EvaluateTransmission(bsdfData, ltcValue, 1); } // Evaluate the coat part if (bsdfData.materialId == MATERIALID_LIT_CLEAR_COAT && HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_CLEAR_COAT)) { // TODO // ltcValue = LTCEvaluate(P1, P2, B, preLightData.ltcXformClearCoat); // ltcValue *= lightData.specularScale; // specularLighting = preLightData.ltcClearCoatFresnelTerm * (ltcValue * bsdfData.coatCoverage); } // Evaluate the specular part { ltcValue = LTCEvaluate(P1, P2, B, preLightData.ltcTransformSpecular); ltcValue *= lightData.specularScale; specularLighting += preLightData.ltcMagnitudeFresnel * ltcValue; } // Save ALU by applying 'lightData.color' only once. diffuseLighting *= lightData.color; specularLighting *= lightData.color; #endif // LIT_DISPLAY_REFERENCE_AREA } //----------------------------------------------------------------------------- // EvaluateBSDF_Area - Approximation with Linearly Transformed Cosines //----------------------------------------------------------------------------- // #define ELLIPSOIDAL_ATTENUATION void EvaluateBSDF_Rect( LightLoopContext lightLoopContext, float3 V, PositionInputs posInput, PreLightData preLightData, LightData lightData, BSDFData bsdfData, out float3 diffuseLighting, out float3 specularLighting) { float3 positionWS = posInput.positionWS; #ifdef LIT_DISPLAY_REFERENCE_AREA IntegrateBSDF_AreaRef(V, positionWS, preLightData, lightData, bsdfData, diffuseLighting, specularLighting); #else diffuseLighting = float3(0.0, 0.0, 0.0); specularLighting = float3(0.0, 0.0, 0.0); float3 unL = lightData.positionWS - positionWS; [branch] if (dot(lightData.forward, unL) >= 0.0001) { // The light is back-facing. return; } // Rotate the light direction into the light space. float3x3 lightToWorld = float3x3(lightData.right, lightData.up, -lightData.forward); unL = mul(unL, transpose(lightToWorld)); // TODO: This could be precomputed. float halfWidth = lightData.size.x * 0.5; float halfHeight = lightData.size.y * 0.5; // Define the dimensions of the attenuation volume. // TODO: This could be precomputed. float radius = rsqrt(lightData.invSqrAttenuationRadius); float3 invHalfDim = rcp(float3(radius + halfWidth, radius + halfHeight, radius)); // Compute the light attenuation. #ifdef ELLIPSOIDAL_ATTENUATION // The attenuation volume is an axis-aligned ellipsoid s.t. // r1 = (r + w / 2), r2 = (r + h / 2), r3 = r. float intensity = GetEllipsoidalDistanceAttenuation(unL, invHalfDim); #else // The attenuation volume is an axis-aligned box s.t. // hX = (r + w / 2), hY = (r + h / 2), hZ = r. float intensity = GetBoxDistanceAttenuation(unL, invHalfDim); #endif // Terminate if the shaded point is too far away. if (intensity == 0.0) return; lightData.diffuseScale *= intensity; lightData.specularScale *= intensity; // Translate the light s.t. the shaded point is at the origin of the coordinate system. lightData.positionWS -= positionWS; float4x3 lightVerts; // TODO: some of this could be precomputed. lightVerts[0] = lightData.positionWS + lightData.right * halfWidth + lightData.up * halfHeight; lightVerts[1] = lightData.positionWS + lightData.right * halfWidth + lightData.up * -halfHeight; lightVerts[2] = lightData.positionWS + lightData.right * -halfWidth + lightData.up * -halfHeight; lightVerts[3] = lightData.positionWS + lightData.right * -halfWidth + lightData.up * halfHeight; // Rotate the endpoints into the local coordinate system. lightVerts = mul(lightVerts, transpose(preLightData.orthoBasisViewNormal)); float ltcValue; // Evaluate the diffuse part { // Polygon irradiance in the transformed configuration. ltcValue = PolygonIrradiance(mul(lightVerts, preLightData.ltcTransformDiffuse)); ltcValue *= lightData.diffuseScale; diffuseLighting = bsdfData.diffuseColor * (preLightData.ltcMagnitudeDiffuse * ltcValue); } [branch] if (bsdfData.enableTransmission) { // Flip the view vector and the normal. The bitangent stays the same. float3x3 flipMatrix = float3x3(-1, 0, 0, 0, 1, 0, 0, 0, -1); // Use the Lambertian approximation for performance reasons. // The matrix multiplication should not generate any extra ALU on GCN. float3x3 ltcTransform = mul(flipMatrix, k_identity3x3); // Polygon irradiance in the transformed configuration. ltcValue = PolygonIrradiance(mul(lightVerts, ltcTransform)); ltcValue *= lightData.diffuseScale; // We use diffuse lighting for accumulation since it is going to be blurred during the SSS pass. diffuseLighting += EvaluateTransmission(bsdfData, ltcValue, 1); } // Evaluate the coat part if (bsdfData.materialId == MATERIALID_LIT_CLEAR_COAT && HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_CLEAR_COAT)) { // TODO // ltcValue = LTCEvaluate(lightVerts, V, bsdfData.coatNormalWS, preLightData.coatNdotV, preLightData.ltcXformClearCoat); // specularLighting = preLightData.ltcClearCoatFresnelTerm * (ltcValue * bsdfData.coatCoverage); // modify matL value based on Fresnel transmission // matL = mul(matL, preLightData.ltcCoatT); // V = preLightData.refractV; } // Evaluate the specular part { // Polygon irradiance in the transformed configuration. ltcValue = PolygonIrradiance(mul(lightVerts, preLightData.ltcTransformSpecular)); ltcValue *= lightData.specularScale; specularLighting += preLightData.ltcMagnitudeFresnel * ltcValue; } // Save ALU by applying 'lightData.color' only once. diffuseLighting *= lightData.color; specularLighting *= lightData.color; #endif // LIT_DISPLAY_REFERENCE_AREA } void EvaluateBSDF_Area( LightLoopContext lightLoopContext, float3 V, PositionInputs posInput, PreLightData preLightData, LightData lightData, BSDFData bsdfData, int GPULightType, out float3 diffuseLighting, out float3 specularLighting) { if (GPULightType == GPULIGHTTYPE_LINE) { EvaluateBSDF_Line(lightLoopContext, V, posInput, preLightData, lightData, bsdfData, diffuseLighting, specularLighting); } else { EvaluateBSDF_Rect(lightLoopContext, V, posInput, preLightData, lightData, bsdfData, diffuseLighting, specularLighting); } } //----------------------------------------------------------------------------- // EvaluateBSDF_SSL // ---------------------------------------------------------------------------- void EvaluateBSDF_SSL(float3 V, PositionInputs posInput, BSDFData bsdfData, out float3 diffuseLighting, out float3 specularLighting, out float2 weight) { diffuseLighting = float3(0.0, 0.0, 0.0); specularLighting = float3(0.0, 0.0, 0.0); weight = float2(0.0, 0.0); #if defined(_REFRACTION_THINPLANE) || defined(_REFRACTION_THICKPLANE) || defined(_REFRACTION_THICKSPHERE) // Refraction process: // 1. Depending on the shape model, we calculate the refracted point in world space and the optical depth // 2. We calculate the screen space position of the refracted point // 3. If this point is available (ie: in color GBuffer and point is not in front of the object) // a. Get the corresponding color depending on the roughness from the gaussian pyramid of the color buffer // b. Multiply by the transmittance for absorption (depends on the optical depth) weight.x = 1.0; float3 refractedBackPointWS = float3(0.0, 0.0, 0.0); float opticalDepth = 0.0; uint2 depthSize = uint2(_PyramidDepthMipSize.xy); // For all refraction approximation, to calculate the refracted point in world space, // we approximate the scene as a plane (back plane) with normal -V at the depth hit point. // (We avoid to raymarch the depth texture to get the refracted point.) #if defined(_REFRACTION_THICKPLANE) // Thick plane shape model: // We approximate locally the shape of the object as halfspace defined by the normal {bsdfData.normallWS} at {bsdfData.positionWS} // Thus, the light is refracted once. // It approximate cubic filled shapes // // However, we can't approximate the optical depth of the object, so we use a constant as parameter ({bsdfData.thickness}) // Refracted ray float3 R = refract(-V, bsdfData.normalWS, 1.0 / bsdfData.ior); // Get the depth of the approximated back plane float pyramidDepth = LOAD_TEXTURE2D_LOD(_PyramidDepthTexture, posInput.positionSS * (depthSize >> 2), 2).r; float depth = LinearEyeDepth(pyramidDepth, _ZBufferParams); // Distance from point to the back plane float distFromP = depth - posInput.depthVS; float VoR = dot(-V, R); refractedBackPointWS = posInput.positionWS + R * distFromP / VoR; opticalDepth = bsdfData.thickness; #elif defined(_REFRACTION_THICKSPHERE) // Thick sphere shape model: // We approximate locally the shape of the object as sphere, that is tangent to the shape. // The sphere has a diameter of {bsdfData.thickness} // The center of the sphere is at {bsdfData.positionWS} - {bsdfData.normalWS} * {bsdfData.thickness} // // So the light is refracted twice: in and out of the tangent sphere // Get the depth of the approximated back plane float pyramidDepth = LOAD_TEXTURE2D_LOD(_PyramidDepthTexture, posInput.positionSS * (depthSize >> 2), 2).r; float depth = LinearEyeDepth(pyramidDepth, _ZBufferParams); // Distance from point to the back plane float depthFromPosition = depth - posInput.depthVS; // First refraction (tangent sphere in) // Refracted ray float3 R1 = refract(-V, bsdfData.normalWS, 1.0 / bsdfData.ior); // Center of the tangent sphere float3 C = posInput.positionWS - bsdfData.normalWS * bsdfData.thickness * 0.5; // Second refraction (tangent sphere out) float NoR1 = dot(bsdfData.normalWS, R1); // Optical depth within the sphere opticalDepth = -NoR1 * bsdfData.thickness; // Out hit point in the tangent sphere float3 P1 = posInput.positionWS + R1 * opticalDepth; // Out normal float3 N1 = normalize(C - P1); // Out refracted ray float3 R2 = refract(R1, N1, bsdfData.ior); float N1oR2 = dot(N1, R2); float VoR1 = dot(V, R1); // Refracted source point refractedBackPointWS = P1 - R2 * (depthFromPosition - NoR1 * VoR1 * bsdfData.thickness) / N1oR2; #elif defined(_REFRACTION_THINPLANE) // Thin plane shape model: // We approximate locally the shape of the object as a plane with normal {bsdfData.normalWS} at {bsdfData.positionWS} // with a thickness {bsdfData.thickness} // Refracted ray float3 R = refract(-V, bsdfData.normalWS, 1.0 / bsdfData.ior); // Get the depth of the approximated back plane float pyramidDepth = LOAD_TEXTURE2D_LOD(_PyramidDepthTexture, posInput.positionSS * (depthSize >> 2), 2).r; float depth = LinearEyeDepth(pyramidDepth, _ZBufferParams); // Distance from point to the back plane float distFromP = depth - posInput.depthVS; // Optical depth within the thin plane opticalDepth = bsdfData.thickness / dot(R, -bsdfData.normalWS); // The refracted ray exiting the thin plane is the same as the incident ray (parallel interfaces and same ior) float VoR = dot(-V, R); float VoN = dot(V, bsdfData.normalWS); refractedBackPointWS = posInput.positionWS + R * opticalDepth - V * (distFromP - VoR * opticalDepth); #endif // Calculate screen space coordinates of refracted point in back plane float4 refractedBackPointCS = mul(_ViewProjMatrix, float4(refractedBackPointWS, 1.0)); float2 refractedBackPointSS = ComputeScreenSpacePosition(refractedBackPointCS); float refractedBackPointDepth = LinearEyeDepth(LOAD_TEXTURE2D_LOD(_PyramidDepthTexture, refractedBackPointSS * depthSize, 0).r, _ZBufferParams); // Exit if texel is out of color buffer // Or if the texel is from an object in front of the object if (refractedBackPointDepth < posInput.depthVS || any(refractedBackPointSS < 0.0) || any(refractedBackPointSS > 1.0)) { diffuseLighting = SAMPLE_TEXTURE2D_LOD(_GaussianPyramidColorTexture, s_trilinear_clamp_sampler, posInput.positionSS, 0.0).rgb; return; } #ifdef _REFRACTION_ROUGHNESS_ON // Map the roughness to the correct mip map level of the color pyramid float mipLevel = PerceptualRoughnessToMipmapLevel(bsdfData.perceptualRoughness, uint(_GaussianPyramidColorMipSize.z)); diffuseLighting = SAMPLE_TEXTURE2D_LOD(_GaussianPyramidColorTexture, s_trilinear_clamp_sampler, refractedBackPointSS, mipLevel).rgb; #else diffuseLighting = SAMPLE_TEXTURE2D_LOD(_GaussianPyramidColorTexture, s_trilinear_clamp_sampler, refractedBackPointSS.xy, 0.0).rgb; #endif // Beer-Lamber law for absorption float3 transmittance = exp(-bsdfData.absorptionCoefficient * opticalDepth); diffuseLighting *= transmittance; #else // Use perfect flat transparency when we cannot fetch the correct pixel color for the refracted point diffuseLighting = SAMPLE_TEXTURE2D_LOD(_GaussianPyramidColorTexture, s_trilinear_clamp_sampler, posInput.positionSS, 0.0).rgb; #endif } //----------------------------------------------------------------------------- // EvaluateBSDF_Env // ---------------------------------------------------------------------------- // _preIntegratedFGD and _CubemapLD are unique for each BRDF void EvaluateBSDF_Env( LightLoopContext lightLoopContext, float3 V, PositionInputs posInput, PreLightData preLightData, EnvLightData lightData, BSDFData bsdfData, int envShapeType, out float3 diffuseLighting, out float3 specularLighting, out float2 weight) { weight = float2(0.0, 1.0); float3 positionWS = posInput.positionWS; #ifdef LIT_DISPLAY_REFERENCE_IBL specularLighting = IntegrateSpecularGGXIBLRef(lightLoopContext, V, preLightData, lightData, bsdfData); /* #ifdef LIT_DIFFUSE_LAMBERT_BRDF diffuseLighting = IntegrateLambertIBLRef(lightData, V, bsdfData); #else diffuseLighting = IntegrateDisneyDiffuseIBLRef(lightLoopContext, V, preLightData, lightData, bsdfData); #endif */ diffuseLighting = float3(0.0, 0.0, 0.0); #else // TODO: factor this code in common, so other material authoring don't require to rewrite everything, // TODO: test the strech from Tomasz // float shrinkedRoughness = AnisotropicStrechAtGrazingAngle(bsdfData.roughness, bsdfData.perceptualRoughness, NdotV); // Guideline for reflection volume: In HDRenderPipeline we separate the projection volume (the proxy of the scene) from the influence volume (what pixel on the screen is affected) // However we add the constrain that the shape of the projection and influence volume is the same (i.e if we have a sphere shape projection volume, we have a shape influence). // It allow to have more coherence for the dynamic if in shader code. // Users can also chose to not have any projection, in this case we use the property minProjectionDistance to minimize code change. minProjectionDistance is set to huge number // that simulate effect of no shape projection float3 R = preLightData.iblDirWS; float3 coatR = preLightData.coatIblDirWS; // In Unity the cubemaps are capture with the localToWorld transform of the component. // This mean that location and orientation matter. So after intersection of proxy volume we need to convert back to world. // CAUTION: localToWorld is the transform use to convert the cubemap capture point to world space (mean it include the offset) // the center of the bounding box is thus in locals space: positionLS - offsetLS // We use this formulation as it is the one of legacy unity that was using only AABB box. float3x3 worldToLocal = transpose(float3x3(lightData.right, lightData.up, lightData.forward)); // worldToLocal assume no scaling float3 positionLS = positionWS - lightData.positionWS; positionLS = mul(positionLS, worldToLocal).xyz - lightData.offsetLS; // We want to calculate the intersection from the center of the bounding box. // Note: using envShapeType instead of lightData.envShapeType allow to make compiler optimization in case the type is know (like for sky) if (envShapeType == ENVSHAPETYPE_SPHERE) { // 1. First process the projection float3 dirLS = mul(R, worldToLocal); float sphereOuterDistance = lightData.innerDistance.x + lightData.blendDistance; float dist = SphereRayIntersectSimple(positionLS, dirLS, sphereOuterDistance); dist = max(dist, lightData.minProjectionDistance); // Setup projection to infinite if requested (mean no projection shape) // We can reuse dist calculate in LS directly in WS as there is no scaling. Also the offset is already include in lightData.positionWS R = (positionWS + dist * R) - lightData.positionWS; // Test again for clear code if (bsdfData.materialId == MATERIALID_LIT_CLEAR_COAT && HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_CLEAR_COAT)) { dirLS = mul(coatR, worldToLocal); dist = SphereRayIntersectSimple(positionLS, dirLS, sphereOuterDistance); coatR = (positionWS + dist * coatR) - lightData.positionWS; } // 2. Process the influence float distFade = max(length(positionLS) - lightData.innerDistance.x, 0.0); weight.y = saturate(1.0 - distFade / max(lightData.blendDistance, 0.0001)); // avoid divide by zero } else if (envShapeType == ENVSHAPETYPE_BOX) { float3 dirLS = mul(R, worldToLocal); float3 boxOuterDistance = lightData.innerDistance + float3(lightData.blendDistance, lightData.blendDistance, lightData.blendDistance); float dist = BoxRayIntersectSimple(positionLS, dirLS, -boxOuterDistance, boxOuterDistance); dist = max(dist, lightData.minProjectionDistance); // Setup projection to infinite if requested (mean no projection shape) // No need to normalize for fetching cubemap // We can reuse dist calculate in LS directly in WS as there is no scaling. Also the offset is already include in lightData.positionWS R = (positionWS + dist * R) - lightData.positionWS; // TODO: add distance based roughness // Test again for clear code if (bsdfData.materialId == MATERIALID_LIT_CLEAR_COAT && HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_CLEAR_COAT)) { dirLS = mul(coatR, worldToLocal); dist = BoxRayIntersectSimple(positionLS, dirLS, -boxOuterDistance, boxOuterDistance); coatR = (positionWS + dist * coatR) - lightData.positionWS; } // Influence volume // Calculate falloff value, so reflections on the edges of the volume would gradually blend to previous reflection. float distFade = DistancePointBox(positionLS, -lightData.innerDistance, lightData.innerDistance); weight.y = saturate(1.0 - distFade / max(lightData.blendDistance, 0.0001)); // avoid divide by zero } // Smooth weighting weight.y = Smoothstep01(weight.y); float3 F = 1.0; specularLighting = float3(0.0, 0.0, 0.0); // Evaluate the Clear Coat component if needed and change the BSDF roughness to match Fresnel transmission if (bsdfData.materialId == MATERIALID_LIT_CLEAR_COAT && HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_CLEAR_COAT)) { F = F_Schlick(preLightData.coatFresnel0, preLightData.coatNdotV); // Evaluate the Clear Coat color float4 preLD = SampleEnv(lightLoopContext, lightData.envIndex, coatR, 0.0); specularLighting += F * preLD.rgb * bsdfData.coatCoverage; // Change the Fresnel term to account for transmission through Clear Coat and reflection on the base layer. F = Sqr(-F * bsdfData.coatCoverage + 1.0); } float4 preLD = SampleEnv(lightLoopContext, lightData.envIndex, R, preLightData.iblMipLevel); specularLighting += F * preLD.rgb * preLightData.specularFGD; diffuseLighting = float3(0.0, 0.0, 0.0); #endif } //----------------------------------------------------------------------------- // PostEvaluateBSDF // ---------------------------------------------------------------------------- void PostEvaluateBSDF( LightLoopContext lightLoopContext, float3 V, PositionInputs posInput, PreLightData preLightData, LightLoopAccumulatedLighting accLighting, BSDFData bsdfData, float3 bakeDiffuseLighting, out float3 diffuseLighting, out float3 specularLighting) { // Use GTAOMultiBounce approximation for ambient occlusion (allow to get a tint from the baseColor) #define GTAO_MULTIBOUNCE_APPROX 1 // Note: When we ImageLoad outside of texture size, the value returned by Load is 0 (Note: On Metal maybe it clamp to value of texture which is also fine) // We use this property to have a neutral value for AO that doesn't consume a sampler and work also with compute shader (i.e use ImageLoad) // We store inverse AO so neutral is black. So either we sample inside or outside the texture it return 0 in case of neutral // Ambient occlusion use for indirect lighting (reflection probe, baked diffuse lighting) float indirectAmbientOcclusion = 1.0 - LOAD_TEXTURE2D(_AmbientOcclusionTexture, posInput.unPositionSS).x; // Ambient occlusion use for direct lighting (directional, punctual, area) float directAmbientOcclusion = lerp(1.0, indirectAmbientOcclusion, _AmbientOcclusionParam.w); // Add indirect diffuse + emissive (if any) - Ambient occlusion is multiply by emissive which is wrong but not a big deal #if GTAO_MULTIBOUNCE_APPROX bakeDiffuseLighting *= GTAOMultiBounce(indirectAmbientOcclusion, bsdfData.diffuseColor); #else bakeDiffuseLighting *= lerp(_AmbientOcclusionParam.rgb, float3(1.0, 1.0, 1.0), indirectAmbientOcclusion); #endif float specularOcclusion = GetSpecularOcclusionFromAmbientOcclusion(preLightData.NdotV, indirectAmbientOcclusion, bsdfData.roughness); // Try to mimic multibounce with specular color. Not the point of the original formula but ok result. // Take the min of screenspace specular occlusion and visibility cone specular occlusion #if GTAO_MULTIBOUNCE_APPROX accLighting.envSpecularLighting *= GTAOMultiBounce(min(bsdfData.specularOcclusion, specularOcclusion), bsdfData.fresnel0); #else accLighting.envSpecularLighting *= lerp(_AmbientOcclusionParam.rgb, float3(1.0, 1.0, 1.0), min(bsdfData.specularOcclusion, specularOcclusion)); #endif // TODO: we could call a function like PostBSDF that will apply albedo and divide by PI once for the loop float3 directDiffuseLighting = (accLighting.dirDiffuseLighting + accLighting.punctualDiffuseLighting + accLighting.areaDiffuseLighting) #if GTAO_MULTIBOUNCE_APPROX * GTAOMultiBounce(directAmbientOcclusion, bsdfData.diffuseColor); #else * lerp(_AmbientOcclusionParam.rgb, float3(1.0, 1.0, 1.0), directAmbientOcclusion); #endif // envDiffuseLighting is used for refraction in this Lit material. Use the weight to balance between transmission and reflection diffuseLighting = lerp(directDiffuseLighting + bakeDiffuseLighting, accLighting.envDiffuseLighting, accLighting.envDiffuseLightingWeight); specularLighting = accLighting.dirSpecularLighting + accLighting.punctualSpecularLighting + accLighting.areaSpecularLighting + accLighting.envSpecularLighting; } #endif // #ifdef HAS_LIGHTLOOP